Patents by Inventor CHELSEA MARSH

CHELSEA MARSH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131268
    Abstract: A fluid injector system for delivering a multi-phase fluid injection to a patient and methods of fluid delivery is disclosed. Methods of creating and using a multi-aspect fluid path impedance model of the injector system are used. Modeling and adjustment of factors that affect impedance and prevent or reduce backflow, reduce the likelihood of fluid flow rate spikes and provide more accurate flow rates and mixing ratios of fluids may be repeated or happen essentially continuously during an injection. The adjustments may be determined before the injection or determined and/or adjusted during the injection. The determination may include sensor feedback commonly used in injectors such as pressure and position feedback as well as other sensors. In all cases, the user can be notified of adjustments through on-screen notices and/or through the recordation of the injection data by a control device of the injector at the conclusion of the injection.
    Type: Application
    Filed: November 27, 2023
    Publication date: April 25, 2024
    Inventors: Arthur Uber, III, Chelsea Marsh, William Barone, Michael McDermott, Timothy Newing, Michael Spohn, Vince Delbrugge, Ralph Schriver, Kevin Cowan, David Griffiths
  • Patent number: 11826553
    Abstract: A fluid injector system for delivering a multi-phase fluid injection to a patient and methods of fluid delivery is disclosed. Methods of creating and using a multi-aspect fluid path impedance model of the injector system are used. Modeling and adjustment of factors that affect impedance and prevent or reduce backflow, reduce the likelihood of fluid flow rate spikes and provide more accurate flow rates and mixing ratios of fluids may be repeated or happen essentially continuously during an injection. The adjustments may be determined before the injection or determined and/or adjusted during the injection. The determination may include sensor feedback commonly used in injectors such as pressure and position feedback as well as other sensors. In all cases, the user can be notified of adjustments through on-screen notices and/or through the recordation of the injection data by a control device of the injector at the conclusion of the injection.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: November 28, 2023
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Arthur Uber, III, Chelsea Marsh, William Barone, Michael McDermott, Timothy Newing, Michael Spohn, Vince Delbrugge, Ralph Schriver, Kevin Cowan, David Griffiths
  • Patent number: 11786652
    Abstract: The present disclosure provides improved methods for calibrating the zero position of at least one drive member of an injector system is disclosed. Automated methods of position calibration of the drive member of a fluid injector are disclosed. These methods address sources of error in positional accuracy and fluid delivery inaccuracies, such as disposable syringe tolerance and injector wear over time. According to other embodiments of the present disclosure, methods and fluid injector systems for determining and correcting for the amount of slack in a fluid injection apparatus are described. An understanding of the calibration and the amount of slack in a fluid injection system allows a processor to correct for the slack, thereby ensuring more accurate fluid delivery to the patient and more accurate imaging processes.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 17, 2023
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Michael McDermott, Chelsea Marsh, Michael Spohn, William Barone, Shahab Taheri, Han Min Thu, David Coleman, Jee Hoon Yoo, Vince Delbrugge
  • Patent number: 11779702
    Abstract: A method for dynamic pressure control during a multiphase injection is described wherein the pressures of fluids in the various reservoirs of a fluid delivery system are controlled to provide desired fluid delivery parameters. The methods include advancing the first drive member to expel the first fluid from the first reservoir into a conduit, wherein the fluid is pressurized to a first fluid pressure; measuring the first fluid pressure to provide a target value; while the second reservoir is in fluid isolation from the conduit, advancing or retracting the second drive member to increase or decrease the fluid pressure of the second fluid in the second reservoir to the target value; placing the second reservoir in fluid communication with the conduit; and advancing the second drive member to expel the second fluid from the second reservoir into the conduit.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 10, 2023
    Assignee: BAYER HEALTHCARE LLC
    Inventors: William Barone, Michael Spohn, Chelsea Marsh, Michael McDermott, John Volkar
  • Publication number: 20230226285
    Abstract: A calibration system for calibrating a pressure output of a fluid injector having a housing configured for connecting to the fluid injector; a drive member engagement portion configured for contacting a drive member of the fluid injector; a compressible member, which may have a known modulus of compression, connected at its proximal end to the drive member engagement portion, wherein the compressible member is compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction; and a sensor connected to the compressible member is described. The sensor is configured for measuring at least one of a force imparted by the drive member and a displacement of the drive member when the compressible member is in the second, at least partially compressed position.
    Type: Application
    Filed: March 6, 2023
    Publication date: July 20, 2023
    Inventors: Michael MCDERMOTT, Chelsea MARSH, Michael SPOHN, William Barone, Robert Praniewicz, Edden Rabin, Corey Savannah, Vince Delbrugge
  • Patent number: 11598664
    Abstract: A calibration system for calibrating a pressure output of a fluid injector having a housing configured for connecting to the fluid injector; a drive member engagement portion configured for contacting a drive member of the fluid injector; a compressible member, which may have a known modulus of compression, connected at its proximal end to the drive member engagement portion, wherein the compressible member is compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction; and a sensor connected to the compressible member is described. The sensor is configured for measuring at least one of a force imparted by the drive member and a displacement of the drive member when the compressible member is in the second, at least partially compressed position.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: March 7, 2023
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Michael McDermott, Chelsea Marsh, Michael Spohn, William Barone, Robert Praniewicz, Edden Rabin, Corey Savannah, Vince Delbrugge
  • Publication number: 20230069601
    Abstract: A system and method for correcting a volume of fluid delivered by a fluid injector during an injection procedure is described. The method included determining and compensating for a volume factor associated with compliance of the fluid injector system and correcting for the volume by one of over-driving the distance that the drive member travels in a fluid reservoir, under-driving the distance that the drive member travels in the fluid reservoir, or lengthening or shortening a fluid delivery time.
    Type: Application
    Filed: October 24, 2022
    Publication date: March 2, 2023
    Inventors: MICHAEL MCDERMOTT, MICHAEL SPOHN, WILLIAM BARONE, CHELSEA MARSH
  • Patent number: 11478581
    Abstract: A system and method for correcting a volume of fluid delivered by a fluid injector during an injection procedure is described. The method included determining and compensating for a volume factor associated with compliance of the fluid injector system and correcting for the volume by one of over-driving the distance that the drive member travels in a fluid reservoir, under-driving the distance that the drive member travels in the fluid reservoir, or lengthening or shortening a fluid delivery time.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 25, 2022
    Assignee: Bayer HealthCare LLC
    Inventors: Michael McDermott, Michael Spohn, William Barone, Chelsea Marsh
  • Publication number: 20220047816
    Abstract: A fluid injector system for delivering a multi-phase fluid injection to a patient and methods of fluid delivery is disclosed. Methods of creating and using a multi-aspect fluid path impedance model of the injector system are used. Modeling and adjustment of factors that affect impedance and prevent or reduce backflow, reduce the likelihood of fluid flow rate spikes and provide more accurate flow rates and mixing ratios of fluids may be repeated or happen essentially continuously during an injection. The adjustments may be determined before the injection or determined and/or adjusted during the injection. The determination may include sensor feedback commonly used in injectors such as pressure and position feedback as well as other sensors. In all cases, the user can be notified of adjustments through on-screen notices and/or through the recordation of the injection data by a control device of the injector at the conclusion of the injection.
    Type: Application
    Filed: September 28, 2021
    Publication date: February 17, 2022
    Inventors: Arthur Uber, III, Chelsea Marsh, William Barone, Michael McDermott, Timothy Newing, Michael Spohn, Vince Delbrugge, Ralph Schriver, Kevin Cowan, David Griffiths
  • Patent number: 11141535
    Abstract: A fluid injector system for delivering a multi-phase fluid injection to a patient and methods of fluid delivery is disclosed. Methods of creating and using a multi-aspect fluid path impedance model of the injector system are used. Modeling and adjustment of factors that affect impedance and prevent or reduce backflow, reduce the likelihood of fluid flow rate spikes and provide more accurate flow rates and mixing ratios of fluids may be repeated or happen essentially continuously during an injection. The adjustments may be determined before the injection or determined and/or adjusted during the injection. The determination may include sensor feedback commonly used in injectors such as pressure and position feedback as well as other sensors. In all cases, the user can be notified of adjustments through on-screen notices and/or through the recordation of the injection data by a control device of the injector at the conclusion of the injection.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 12, 2021
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Arthur Uber, III, Chelsea Marsh, William Barone, Michael McDermott, Timothy Newing, Michael Spohn, Vince Delbrugge, Ralph Schriver, Kevin Cowan, Barry Tucker, Ronald Heller, David Griffiths, Matthew Schrauder
  • Publication number: 20200206414
    Abstract: A method of delivering a multi-phase fluid injection to a patient via a fluid injector comprising two or more syringes includes injecting a first fluid of the fluid injection from at least a first syringe at a first predetermined flow rate, wherein the first fluid has a first viscosity; injecting an initial portion of a second fluid from at least a second syringe at an intermediate flow rate different than a second predetermined flow rate for a specified time, the second fluid having a second viscosity different from the first viscosity; and injecting a remaining portion of the second fluid of the fluid injection at a flow rate at the second predetermined flow rate. A fluid injector system configured for delivering a multi-phase fluid injection is disclosed.
    Type: Application
    Filed: August 28, 2018
    Publication date: July 2, 2020
    Inventors: Chelsea MARSH, William BARONE, Michael SPOHN, Kevin FLEISCHMANN, Michael MCDERMOTT
  • Publication number: 20200179595
    Abstract: The present disclosure provides improved methods for calibrating the zero position of at least one drive member of an injector system is disclosed. Automated methods of position calibration of the drive member of a fluid injector are disclosed. These methods address sources of error in positional accuracy and fluid delivery inaccuracies, such as disposable syringe tolerance and injector wear over time. According to other embodiments of the present disclosure, methods and fluid injector systems for determining and correcting for the amount of slack in a fluid injection apparatus are described. An understanding of the calibration and the amount of slack in a fluid injection system allows a processor to correct for the slack, thereby ensuring more accurate fluid delivery to the patient and more accurate imaging processes.
    Type: Application
    Filed: August 28, 2018
    Publication date: June 11, 2020
    Inventors: MICHAEL MCDERMOTT, CHELSEA MARSH, MICHAEL SPOHN, WILLIAM BARONE, SHAHAB TAHERI, HAN MIN THU, DAVID COLEMAN, JEE HOON YOO, VINCE DELBRUGGE
  • Publication number: 20200149948
    Abstract: A calibration system for calibrating a pressure output of a fluid injector having a housing configured for connecting to the fluid injector; a drive member engagement portion configured for contacting a drive member of the fluid injector; a compressible member, which may have a known modulus of compression, connected at its proximal end to the drive member engagement portion, wherein the compressible member is compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction; and a sensor connected to the compressible member is described. The sensor is configured for measuring at least one of a force imparted by the drive member and a displacement of the drive member when the compressible member is in the second, at least partially compressed position.
    Type: Application
    Filed: August 28, 2018
    Publication date: May 14, 2020
    Inventors: Michael MCDERMOTT, Chelsea MARSH, Michael SPOHN, William Barone, Robert Praniewicz, Edden Rabin, Corey Savannah, Vince Delbrugge
  • Publication number: 20200121860
    Abstract: A fluid injector system for delivering a multi-phase fluid injection to a patient and methods of fluid delivery is disclosed. Methods of creating and using a multi-aspect fluid path impedance model of the injector system are used. Modeling and adjustment of factors that affect impedance and prevent or reduce backflow, reduce the likelihood of fluid flow rate spikes and provide more accurate flow rates and mixing ratios of fluids may be repeated or happen essentially continuously during an injection. The adjustments may be determined before the injection or determined and/or adjusted during the injection. The determination may include sensor feedback commonly used in injectors such as pressure and position feedback as well as other sensors. In all cases, the user can be notified of adjustments through on-screen notices and/or through the recordation of the injection data by a control device of the injector at the conclusion of the injection.
    Type: Application
    Filed: August 28, 2018
    Publication date: April 23, 2020
    Inventors: Arthur UBER, III, Chelsea MARSH, William Barone, Michael MCDERMOTT, Timothy NEWING, Michael SPOHN, Vince DELBRUGGE, Ralph SCHRIVER, Kevin COWAN, Barry TUCKER, Ronald HELLER, David GRIFFITHS, Matthew SCHRAUDER
  • Publication number: 20200114074
    Abstract: A method for dynamic pressure control during a multiphase injection is described wherein the pressures of fluids in the various reservoirs of a fluid delivery system are controlled to provide desired fluid delivery parameters. The methods include advancing the first drive member to expel the first fluid from the first reservoir into a conduit, wherein the fluid is pressurized to a first fluid pressure; measuring the first fluid pressure to provide a target value; while the second reservoir is in fluid isolation from the conduit, advancing or retracting the second drive member to increase or decrease the fluid pressure of the second fluid in the second reservoir to the target value; placing the second reservoir in fluid communication with the conduit; and advancing the second drive member to expel the second fluid from the second reservoir into the conduit.
    Type: Application
    Filed: August 28, 2018
    Publication date: April 16, 2020
    Inventors: WILLIAM BARONE, MICHAEL SPOHN, CHELSEA MARSH, MICHAEL MCDERMOTT, JOHN VOLKAR
  • Publication number: 20200093980
    Abstract: A system and method for correcting a volume of fluid delivered by a fluid injector during an injection procedure is described. The method included determining and compensating for a volume factor associated with compliance of the fluid injector system and correcting for the volume by one of over-driving the distance that the drive member travels in a fluid reservoir, under-driving the distance that the drive member travels in the fluid reservoir, or lengthening or shortening a fluid delivery time.
    Type: Application
    Filed: August 28, 2018
    Publication date: March 26, 2020
    Inventors: MICHAEL MCDERMOTT, MICHAEL SPOHN, WILLIAM BARONE, CHELSEA MARSH