Patents by Inventor Chen-Chiu Hsu

Chen-Chiu Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8980703
    Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. A stacked structure including a gate oxide layer, a floating gate and a first spacer is formed on the substrate in the cell area and a resistor is formed on the substrate in the periphery area. At least two doped regions are formed in the substrate beside the stacked structure. A dielectric material layer and a conductive material layer are sequentially formed on the substrate. A patterned photoresist layer is formed on the substrate to cover the stacked structure and a portion of the resistor. The dielectric material layer and the conductive material layer not covered by the patterned photoresist layer are removed, so as to form an inter-gate dielectric layer and a control gate on the stacked structure, and simultaneously form a salicide block layer on the resistor.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: March 17, 2015
    Assignee: Maxchip Electronics Corp.
    Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
  • Publication number: 20150024562
    Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. A stacked structure including a gate oxide layer, a floating gate and a first spacer is formed on the substrate in the cell area and a resistor is formed on the substrate in the periphery area. At least two doped regions are formed in the substrate beside the stacked structure. A dielectric material layer and a conductive material layer are sequentially formed on the substrate. A patterned photoresist layer is formed on the substrate to cover the stacked structure and a portion of the resistor. The dielectric material layer and the conductive material layer not covered by the patterned photoresist layer are removed, so as to form an inter-gate dielectric layer and a control gate on the stacked structure, and simultaneously form a salicide block layer on the resistor.
    Type: Application
    Filed: October 3, 2014
    Publication date: January 22, 2015
    Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
  • Patent number: 8907395
    Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. A stacked structure including a gate oxide layer, a floating gate and a first spacer is formed on the substrate in the cell area and a resistor is formed on the substrate in the periphery area. At least two doped regions are formed in the substrate beside the stacked structure. A dielectric material layer and a conductive material layer are sequentially formed on the substrate. A patterned photoresist layer is formed on the substrate to cover the stacked structure and a portion of the resistor. The dielectric material layer and the conductive material layer not covered by the patterned photoresist layer are removed, so as to form an inter-gate dielectric layer and a control gate on the stacked structure, and simultaneously form a salicide block layer on the resistor.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: December 9, 2014
    Assignee: Maxchip Electronics Corp.
    Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
  • Patent number: 8895386
    Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. An oxide material layer and a first conductive material layer are sequentially formed on the substrate in the cell and periphery areas. A patterning step is performed to form first and second stacked structures on the substrate respectively in the cell and periphery areas. First and second spacers are formed respectively on sidewalls of the first and second stacked structures. At least two first doped regions are formed in the substrate beside the first stacked structure, and two second doped regions are formed in the substrate beside the second stacked structure. A dielectric layer and a second conductive layer are formed at least on the first stacked structure. The first stacked structure, the dielectric layer, and the second conductive layer in the cell area constitute a charge storage structure.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: November 25, 2014
    Assignee: Maxchip Electronics Corp.
    Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
  • Publication number: 20140024183
    Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. An oxide material layer and a first conductive material layer are sequentially formed on the substrate in the cell and periphery areas. A patterning step is performed to form first and second stacked structures on the substrate respectively in the cell and periphery areas. First and second spacers are formed respectively on sidewalls of the first and second stacked structures. At least two first doped regions are formed in the substrate beside the first stacked structure, and two second doped regions are formed in the substrate beside the second stacked structure. A dielectric layer and a second conductive layer are formed at least on the first stacked structure. The first stacked structure, the dielectric layer, and the second conductive layer in the cell area constitute a charge storage structure.
    Type: Application
    Filed: October 1, 2012
    Publication date: January 23, 2014
    Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
  • Publication number: 20130043522
    Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. A stacked structure including a gate oxide layer, a floating gate and a first spacer is formed on the substrate in the cell area and a resistor is formed on the substrate in the periphery area. At least two doped regions are formed in the substrate beside the stacked structure. A dielectric material layer and a conductive material layer are sequentially formed on the substrate. A patterned photoresist layer is formed on the substrate to cover the stacked structure and a portion of the resistor. The dielectric material layer and the conductive material layer not covered by the patterned photoresist layer are removed, so as to form an inter-gate dielectric layer and a control gate on the stacked structure, and simultaneously form a salicide block layer on the resistor.
    Type: Application
    Filed: September 25, 2011
    Publication date: February 21, 2013
    Applicant: MAXCHIP ELECTRONICS CORP.
    Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
  • Patent number: 5985709
    Abstract: A triple-well structure for semiconductor IC devices such as an SRAM IC device and a process for its fabrication, that allows for improved data storage stability as well as improved immunity capability against interference from device I/O bouncing and alpha particles. The triple-well structure includes at least one P-well in a P-type substrate, a number of N-wells, and a retrograde P-well formed within one of the N-wells. The process for fabricating the triple-well structure includes first implanting boron ions in the P-type substrate. A photomask is subsequently formed for the implantation of phosphorous ions in the region where a P-type MOS transistor is to be fabricated. A high temperature drive-in procedure is then employed to form a P-well and a number of N-wells. A selected area of one of the N-wells where an N-type MOS transistor is defined is then subjected to boron ion implantation, which is followed by an annealing procedure to form the retrograde P-well.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: November 16, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Chung-Yuan Lee, Chun-Yen Chang, Sun-Chieh Chien, Chen-Chiu Hsu