Patents by Inventor Chen-Chiu Hsu
Chen-Chiu Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8980703Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. A stacked structure including a gate oxide layer, a floating gate and a first spacer is formed on the substrate in the cell area and a resistor is formed on the substrate in the periphery area. At least two doped regions are formed in the substrate beside the stacked structure. A dielectric material layer and a conductive material layer are sequentially formed on the substrate. A patterned photoresist layer is formed on the substrate to cover the stacked structure and a portion of the resistor. The dielectric material layer and the conductive material layer not covered by the patterned photoresist layer are removed, so as to form an inter-gate dielectric layer and a control gate on the stacked structure, and simultaneously form a salicide block layer on the resistor.Type: GrantFiled: October 3, 2014Date of Patent: March 17, 2015Assignee: Maxchip Electronics Corp.Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
-
Publication number: 20150024562Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. A stacked structure including a gate oxide layer, a floating gate and a first spacer is formed on the substrate in the cell area and a resistor is formed on the substrate in the periphery area. At least two doped regions are formed in the substrate beside the stacked structure. A dielectric material layer and a conductive material layer are sequentially formed on the substrate. A patterned photoresist layer is formed on the substrate to cover the stacked structure and a portion of the resistor. The dielectric material layer and the conductive material layer not covered by the patterned photoresist layer are removed, so as to form an inter-gate dielectric layer and a control gate on the stacked structure, and simultaneously form a salicide block layer on the resistor.Type: ApplicationFiled: October 3, 2014Publication date: January 22, 2015Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
-
Patent number: 8907395Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. A stacked structure including a gate oxide layer, a floating gate and a first spacer is formed on the substrate in the cell area and a resistor is formed on the substrate in the periphery area. At least two doped regions are formed in the substrate beside the stacked structure. A dielectric material layer and a conductive material layer are sequentially formed on the substrate. A patterned photoresist layer is formed on the substrate to cover the stacked structure and a portion of the resistor. The dielectric material layer and the conductive material layer not covered by the patterned photoresist layer are removed, so as to form an inter-gate dielectric layer and a control gate on the stacked structure, and simultaneously form a salicide block layer on the resistor.Type: GrantFiled: September 25, 2011Date of Patent: December 9, 2014Assignee: Maxchip Electronics Corp.Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
-
Patent number: 8895386Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. An oxide material layer and a first conductive material layer are sequentially formed on the substrate in the cell and periphery areas. A patterning step is performed to form first and second stacked structures on the substrate respectively in the cell and periphery areas. First and second spacers are formed respectively on sidewalls of the first and second stacked structures. At least two first doped regions are formed in the substrate beside the first stacked structure, and two second doped regions are formed in the substrate beside the second stacked structure. A dielectric layer and a second conductive layer are formed at least on the first stacked structure. The first stacked structure, the dielectric layer, and the second conductive layer in the cell area constitute a charge storage structure.Type: GrantFiled: October 1, 2012Date of Patent: November 25, 2014Assignee: Maxchip Electronics Corp.Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
-
Publication number: 20140024183Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. An oxide material layer and a first conductive material layer are sequentially formed on the substrate in the cell and periphery areas. A patterning step is performed to form first and second stacked structures on the substrate respectively in the cell and periphery areas. First and second spacers are formed respectively on sidewalls of the first and second stacked structures. At least two first doped regions are formed in the substrate beside the first stacked structure, and two second doped regions are formed in the substrate beside the second stacked structure. A dielectric layer and a second conductive layer are formed at least on the first stacked structure. The first stacked structure, the dielectric layer, and the second conductive layer in the cell area constitute a charge storage structure.Type: ApplicationFiled: October 1, 2012Publication date: January 23, 2014Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
-
Publication number: 20130043522Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. A stacked structure including a gate oxide layer, a floating gate and a first spacer is formed on the substrate in the cell area and a resistor is formed on the substrate in the periphery area. At least two doped regions are formed in the substrate beside the stacked structure. A dielectric material layer and a conductive material layer are sequentially formed on the substrate. A patterned photoresist layer is formed on the substrate to cover the stacked structure and a portion of the resistor. The dielectric material layer and the conductive material layer not covered by the patterned photoresist layer are removed, so as to form an inter-gate dielectric layer and a control gate on the stacked structure, and simultaneously form a salicide block layer on the resistor.Type: ApplicationFiled: September 25, 2011Publication date: February 21, 2013Applicant: MAXCHIP ELECTRONICS CORP.Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
-
Patent number: 5985709Abstract: A triple-well structure for semiconductor IC devices such as an SRAM IC device and a process for its fabrication, that allows for improved data storage stability as well as improved immunity capability against interference from device I/O bouncing and alpha particles. The triple-well structure includes at least one P-well in a P-type substrate, a number of N-wells, and a retrograde P-well formed within one of the N-wells. The process for fabricating the triple-well structure includes first implanting boron ions in the P-type substrate. A photomask is subsequently formed for the implantation of phosphorous ions in the region where a P-type MOS transistor is to be fabricated. A high temperature drive-in procedure is then employed to form a P-well and a number of N-wells. A selected area of one of the N-wells where an N-type MOS transistor is defined is then subjected to boron ion implantation, which is followed by an annealing procedure to form the retrograde P-well.Type: GrantFiled: October 31, 1997Date of Patent: November 16, 1999Assignee: United Microelectronics Corp.Inventors: Chung-Yuan Lee, Chun-Yen Chang, Sun-Chieh Chien, Chen-Chiu Hsu