Patents by Inventor Chen-Fa Lu

Chen-Fa Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11670584
    Abstract: The present disclosure provides a method for manufacturing a semiconductor structure, including patterning a photo-sensitive polymer layer with a plurality of trenches by a first mask, the first mask having a first line pitch, patterning a photoresist positioning on a mesa between adjacent trenches by a second mask, the second mask having a second line pitch, the first mask and the second mask having substantially identical pattern topography, and the second line pitch being greater than the first line pitch, and selectively plating conductive material in the plurality of trenches.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Ching-Chung Hsu, Chung-Long Chang
  • Publication number: 20220189928
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 11270978
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20210366828
    Abstract: The present disclosure provides a method for manufacturing a semiconductor structure, including patterning a photo-sensitive polymer layer with a plurality of trenches by a first mask, the first mask having a first line pitch, patterning a photoresist positioning on a mesa between adjacent trenches by a second mask, the second mask having a second line pitch, the first mask and the second mask having substantially identical pattern topography, and the second line pitch being greater than the first line pitch, and selectively plating conductive material in the plurality of trenches.
    Type: Application
    Filed: August 3, 2021
    Publication date: November 25, 2021
    Inventors: CHEN-FA LU, CHENG-YUAN TSAI, CHING-CHUNG HSU, CHUNG-LONG CHANG
  • Patent number: 11114378
    Abstract: The present disclosure provides a semiconductor structure having an ultra thick metal (UTM). The semiconductor structure includes a substrate, a metal layer over the substrate, and an UTM over the metal layer. An area density of the UTM is greater than 40% and a thickness of the UTM is equal to or greater than 6 micrometer. The present disclosure provides a method for manufacturing a semiconductor structure having a UTM. The method includes patterning a dielectric layer with a plurality of trenches by a first mask, patterning a photoresist positioning on a mesa between adjacent trenches by a second mask, and selectively plating conductive materials in the plurality of trenches.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: September 7, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Ching-Chung Hsu, Chung-Long Chang
  • Patent number: 10665456
    Abstract: A semiconductor structure comprises a substrate comprising an interlayer dielectric (ILD) and a silicon layer disposed over the ILD, wherein the ILD comprises a conductive structure disposed therein, a dielectric layer disposed over the silicon layer, and a conductive plug electrically connected with the conductive structure and extended from the dielectric layer through the silicon layer to the ILD, wherein the conductive plug has a length extending from the dielectric layer to the ILD and a width substantially consistent along the length.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: May 26, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shih-Pei Chou, Chen-Fa Lu, Jiech-Fun Lu, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20200118977
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 10534353
    Abstract: A system for reducing processing defects during processing of a semiconductor wafer prior to back-grinding the wafer includes a table having one or more holes formed therein, wherein the table comprises at least one of a chuck table or a support table, wherein the holes are perpendicular to the surface upon which a pre-back-grinding (PBG) process occurs. The system further includes one or more sensors disposed in said holes for monitoring a parameter during the PBG process. The system further includes a computer-implemented process control tool coupled with the one or more sensors and configured to determine whether the PBG process will continue.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: January 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Fa Lu, Cheng-Ting Chen, James Hu, Chung-Shi Liu
  • Patent number: 10510723
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20190252317
    Abstract: The present disclosure provides a semiconductor structure having an ultra thick metal (UTM). The semiconductor structure includes a substrate, a metal layer over the substrate, and an UTM over the metal layer. An area density of the UTM is greater than 40% and a thickness of the UTM is equal to or greater than 6 micrometer. The present disclosure provides a method for manufacturing a semiconductor structure having a UTM. The method includes patterning a dielectric layer with a plurality of trenches by a first mask, patterning a photoresist positioning on a mesa between adjacent trenches by a second mask, and selectively plating conductive materials in the plurality of trenches.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 15, 2019
    Inventors: CHEN-FA LU, CHENG-YUAN TSAI, CHING-CHUNG HSU, CHUNG-LONG CHANG
  • Patent number: 10269701
    Abstract: The present disclosure provides a semiconductor structure having an ultra thick metal (UTM). The semiconductor structure includes a substrate, a metal layer over the substrate, and an UTM over the metal layer. An area density of the UTM is greater than 40% and a thickness of the UTM is equal to or greater than 6 micrometer. The present disclosure provides a method for manufacturing a semiconductor structure having a UTM. The method includes patterning a dielectric layer with a plurality of trenches by a first mask, patterning a photoresist positioning on a mesa between adjacent trenches by a second mask, and selectively plating conductive materials in the plurality of trenches.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Ching-Chung Hsu, Chung-Long Chang
  • Publication number: 20190080907
    Abstract: A semiconductor structure comprises a substrate comprising an interlayer dielectric (ILD) and a silicon layer disposed over the ILD, wherein the ILD comprises a conductive structure disposed therein, a dielectric layer disposed over the silicon layer, and a conductive plug electrically connected with the conductive structure and extended from the dielectric layer through the silicon layer to the ILD, wherein the conductive plug has a length extending from the dielectric layer to the ILD and a width substantially consistent along the length.
    Type: Application
    Filed: November 12, 2018
    Publication date: March 14, 2019
    Inventors: SHIH-PEI CHOU, CHEN-FA LU, JIECH-FUN LU, YEUR-LUEN TU, CHIA-SHIUNG TSAI
  • Patent number: 10134645
    Abstract: A stress monitoring device includes an anchor structure, a freestanding structure and a Vernier structure. The anchor structure is over a substrate. The freestanding structure is over the substrate, wherein the freestanding structure is connected to the anchor structure and includes a free end suspended from the substrate. The Vernier structure is over the substrate and adjacent to the free end of the freestanding structure, wherein the Vernier structure comprises scales configured to measure a displacement of the free end of the freestanding structure.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: November 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai
  • Patent number: 10128113
    Abstract: A semiconductor structure comprises a substrate comprising an interlayer dielectric (ILD) and a silicon layer disposed over the ILD, wherein the ILD comprises a conductive structure disposed therein, a dielectric layer disposed over the silicon layer, and a conductive plug electrically connected with the conductive structure and extended from the dielectric layer through the silicon layer to the ILD, wherein the conductive plug has a length running from the dielectric layer to the ILD and a width substantially consistent along the length.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: November 13, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shih-Pei Chou, Chen-Fa Lu, Jiech-Fun Lu, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20180286769
    Abstract: A stress monitoring device includes an anchor structure, a freestanding structure and a Vernier structure. The anchor structure is over a substrate. The freestanding structure is over the substrate, wherein the freestanding structure is connected to the anchor structure and includes a free end suspended from the substrate. The Vernier structure is over the substrate and adjacent to the free end of the freestanding structure, wherein the Vernier structure comprises scales configured to measure a displacement of the free end of the freestanding structure.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventors: CHEN-FA LU, CHENG-YUAN TSAI
  • Publication number: 20180053748
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 22, 2018
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 9793243
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: October 17, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20170200640
    Abstract: A semiconductor structure comprises a substrate comprising an interlayer dielectric (ILD) and a silicon layer disposed over the ILD, wherein the ILD comprises a conductive structure disposed therein, a dielectric layer disposed over the silicon layer, and a conductive plug electrically connected with the conductive structure and extended from the dielectric layer through the silicon layer to the ILD, wherein the conductive plug has a length running from the dielectric layer to the ILD and a width substantially consistent along the length.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 13, 2017
    Inventors: Shih-Pei Chou, Chen-Fa Lu, Jiech-Fun Lu, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20170098606
    Abstract: The present disclosure provides a semiconductor structure having an ultra thick metal (UTM). The semiconductor structure includes a substrate, a metal layer over the substrate, and an UTM over the metal layer. An area density of the UTM is greater than 40% and a thickness of the UTM is equal to or greater than 6 micrometer. The present disclosure provides a method for manufacturing a semiconductor structure having a UTM. The method includes patterning a dielectric layer with a plurality of trenches by a first mask, patterning a photoresist positioning on a mesa between adjacent trenches by a second mask, and selectively plating conductive materials in the plurality of trenches.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 6, 2017
    Inventors: CHEN-FA LU, CHENG-YUAN TSAI, CHING-CHUNG HSU, CHUNG-LONG CHANG
  • Patent number: 9508659
    Abstract: A method includes holding bonded wafers by a wafer holding module. A gap between the bonded wafers along an edge is filled with a protection material.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: November 29, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Fa Lu, Yeur-Luen Tu, Shu-Ju Tsai, Cheng-Ta Wu, Chia-Shiung Tsai, Xiaomeng Chen