Patents by Inventor Chen-Hsuan LU

Chen-Hsuan LU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12142579
    Abstract: A package structure includes a redistribution circuit structure, a wiring substrate, an insulating encapsulation, and a reinforcement structure. The redistribution circuit structure has dielectric layers. The wiring substrate is disposed on the redistribution circuit structure. The insulating encapsulation laterally encapsulates the wiring substrate. The reinforcement structure includes reinforcement pattern layers and reinforcement vias. The reinforcement pattern layers and the dielectric layers are stacked alternately. The reinforcement vias penetrate through the dielectric layers to connect the reinforcement pattern layers. At least one of the reinforcement pattern layers is embedded in the insulating encapsulation. The reinforcement structure is electrically floating.
    Type: Grant
    Filed: July 18, 2023
    Date of Patent: November 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Fu Tsai, Shih-Ting Lin, Szu-Wei Lu, Chen-Hsuan Tsai, I-Ting Huang
  • Patent number: 12136651
    Abstract: A semiconductor structure includes a SiGe fin protruding from a substrate, where the SiGe fin includes a top portion having a first sidewall and a second sidewall and a bottom portion having a third sidewall and a fourth sidewall, and where a first transition region connecting the first sidewall to the third sidewall and a second transition region connecting the second sidewall to the fourth sidewall each have a tapered profile extending away from the first sidewall and the second sidewall, respectively, and a Si-containing layer disposed on the top portion of the SiGe fin, where a portion of the Si-containing layer on the first transition region extends away from the first sidewall by a first lateral distance and a portion of the Si-containing layer on the second transition region extends away from the second sidewall by a second lateral distance that is different from the first lateral distance.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: November 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Shan Lu, Hung-Ju Chou, Pei-Ling Gao, Chen-Hsuan Liao, Chih-Chung Chang, Jiun-Ming Kuo, Che-Yuan Hsu
  • Publication number: 20240304466
    Abstract: A method of fabricating a semiconductor device is provided. The method includes providing a die stacking unit that includes a plurality of dies stacked on each other, and a plurality of conductive joints connected between each two adjacent dies. The method includes providing a plurality of dummy micro bumps and dummy pads between the two adjacent dies and between the conductive joints. The dummy micro bumps and the dummy pads are connected to one of the two adjacent dies but not to the other, and the dummy micro bumps are formed on some of the dummy pads but not on all of the dummy pads. The method includes dispensing an underfill material into gaps between the plurality of dies, the conductive joints, the dummy micro bumps, and the dummy pads.
    Type: Application
    Filed: May 20, 2024
    Publication date: September 12, 2024
    Inventors: Tsung-Fu TSAI, Chen-Hsuan TSAI, Chung-Chieh TING, Shih-Ting LIN, Szu-Wei LU
  • Publication number: 20240088255
    Abstract: A method includes forming source/drain regions in a semiconductor substrate; depositing a zirconium-containing oxide layer over a channel region in the semiconductor substrate and between the source/drain region; forming a titanium oxide layer in contact with the zirconium-containing oxide layer; forming a top electrode over the zirconium-containing oxide layer, wherein no annealing is performed after depositing the zirconium-containing oxide layer and prior to forming the top electrode.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Miin-Jang CHEN, Sheng-Han YI, Chen-Hsuan LU
  • Patent number: 11855171
    Abstract: A method includes forming source/drain regions in a semiconductor substrate; depositing a zirconium-containing oxide layer over a channel region in the semiconductor substrate and between the source/drain region; forming a titanium oxide layer in contact with the zirconium-containing oxide layer; forming a top electrode over the zirconium-containing oxide layer, wherein no annealing is performed after depositing the zirconium-containing oxide layer and prior to forming the top electrode.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: December 26, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Miin-Jang Chen, Sheng-Han Yi, Chen-Hsuan Lu
  • Patent number: 11823895
    Abstract: A method of forming graphene on a flexible substrate includes providing a polymer substrate including a metal structure and providing a carbon source and a carrier gas. The method also includes subjecting the polymer substrate to a plasma enhanced chemical vapor deposition (PECVD) process and growing a graphene layer on the copper structure.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: November 21, 2023
    Assignees: California Institute of Technology, Industrial Technology Research Institute
    Inventors: Chen-Hsuan Lu, Chyi-Ming Leu, Nai-Chang Yeh, Chih-Cheng Lin, Chi-Fu Tseng
  • Publication number: 20220115230
    Abstract: A method of forming graphene on a flexible substrate includes providing a polymer substrate including a metal structure and providing a carbon source and a carrier gas. The method also includes subjecting the polymer substrate to a plasma enhanced chemical vapor deposition (PECVD) process and growing a graphene layer on the copper structure.
    Type: Application
    Filed: October 13, 2021
    Publication date: April 14, 2022
    Applicants: CALIFORNIA INSTITUTE OF TECHNOLOGY, Industrial Technology Research Institute
    Inventors: Chen-Hsuan Lu, Chyi-Ming Leu, Nai-Chang Yeh, Chih-Cheng Lin, Chi-Fu Tseng
  • Publication number: 20210384315
    Abstract: A method includes forming source/drain regions in a semiconductor substrate; depositing a zirconium-containing oxide layer over a channel region in the semiconductor substrate and between the source/drain region; forming a titanium oxide layer in contact with the zirconium-containing oxide layer; forming a top electrode over the zirconium-containing oxide layer, wherein no annealing is performed after depositing the zirconium-containing oxide layer and prior to forming the top electrode.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 9, 2021
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Miin-Jang CHEN, Sheng-Han YI, Chen-Hsuan LU
  • Patent number: 11101362
    Abstract: A device includes a substrate, a first zirconium-containing oxide layer, a first metal oxide layer and a top electrode. The first zirconium-containing oxide layer is over a substrate and having ferroelectricity or antiferroelectricity. The first metal oxide layer is in contact with the first zirconium-containing oxide layer. The first metal oxide layer has a thickness less than a thickness of the first zirconium-containing oxide layer. The top electrode is over the first zirconium-containing oxide layer.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: August 24, 2021
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Miin-Jang Chen, Sheng-Han Yi, Chen-Hsuan Lu
  • Publication number: 20200035807
    Abstract: A device includes a substrate, a first zirconium-containing oxide layer, a first metal oxide layer and a top electrode. The first zirconium-containing oxide layer is over a substrate and having ferroelectricity or antiferroelectricity. The first metal oxide layer is in contact with the first zirconium-containing oxide layer. The first metal oxide layer has a thickness less than a thickness of the first zirconium-containing oxide layer. The top electrode is over the first zirconium-containing oxide layer.
    Type: Application
    Filed: December 26, 2018
    Publication date: January 30, 2020
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Miin-Jang CHEN, Sheng-Han YI, Chen-Hsuan LU