Patents by Inventor Chen-Hua Hsu
Chen-Hua Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12227837Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: May 16, 2022Date of Patent: February 18, 2025Assignee: Lam Research CorporationInventors: Damodar Rajaram Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Patent number: 12163219Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: September 7, 2022Date of Patent: December 10, 2024Assignee: Lam Research CorporationInventors: Damodar Rajaram Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Publication number: 20230383401Abstract: In some examples, a method for conditioning a wafer processing chamber comprises setting a pressure in the chamber to a predetermined pressure range, setting a temperature of the chamber to a predetermined temperature, and supplying a process gas mixture to a gas distribution device within the chamber. A plasma is struck within the chamber and a condition in the chamber is monitored. Based on a detection of the monitored condition meeting or transgressing a threshold value, a chamber conditioning operation is implemented. The chamber conditioning operation may include depositing a preconditioning film onto an internal surface of the chamber, depositing a silicon oxycarbide (SiCO) film onto the preconditioning film, and depositing a protective layer onto the SiCO film.Type: ApplicationFiled: August 9, 2023Publication date: November 30, 2023Inventors: Fengyuan LAI, Bo GONG, Guangbi YUAN, Chen-Hua HSU, Bhadri VARADARAJAN
-
Patent number: 11761079Abstract: In some examples, a method for conditioning a wafer processing chamber comprises setting a pressure in the chamber to a predetermined pressure range, setting a temperature of the chamber to a predetermined temperature, and supplying a process gas mixture to a gas distribution device within the chamber. A plasma is struck within the chamber and a condition in the chamber is monitored. Based on a detection of the monitored condition meeting or transgressing a threshold value, a chamber conditioning operation is implemented. The chamber conditioning operation may include depositing a preconditioning film onto an internal surface of the chamber, depositing a silicon oxycarbide (SiCO) film onto the preconditioning film, and depositing a protective layer onto the SiCO film.Type: GrantFiled: December 6, 2018Date of Patent: September 19, 2023Assignee: Lam Research CorporationInventors: Fengyuan Lai, Bo Gong, Guangbi Yuan, Chen-Hua Hsu, Bhadri Varadarajan
-
Publication number: 20230002891Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: September 7, 2022Publication date: January 5, 2023Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
-
Publication number: 20220275504Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: May 16, 2022Publication date: September 1, 2022Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
-
Patent number: 11365479Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: July 22, 2020Date of Patent: June 21, 2022Assignee: Lam Research CorporationInventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Publication number: 20210164097Abstract: In some examples, a method for conditioning a wafer processing chamber comprises setting a pressure in the chamber to a predetermined pressure range, setting a temperature of the chamber to a predetermined temperature, and supplying a process gas mixture to a gas distribution device within the chamber. A plasma is struck within the chamber and a condition in the chamber is monitored. Based on a detection of the monitored condition meeting or transgressing a threshold value, a chamber conditioning operation is implemented. The chamber conditioning operation may include depositing a preconditioning film onto an internal surface of the chamber, depositing a silicon oxycarbide (SiCO) film onto the preconditioning film, and depositing a protective layer onto the SiCO film.Type: ApplicationFiled: December 6, 2018Publication date: June 3, 2021Inventors: Fengyuan Lai, Bo Gong, Guangbi Yuan, Chen-Hua Hsu, Bhadri Varadarajan
-
Publication number: 20200347497Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: July 22, 2020Publication date: November 5, 2020Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Patent number: 10760158Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: April 16, 2018Date of Patent: September 1, 2020Assignee: Lam Research CorporationInventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare, Huatan Qiu
-
Publication number: 20190185999Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: April 16, 2018Publication date: June 20, 2019Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Publication number: 20100076521Abstract: Electrical stimulation system and method for generating virtual channels are disclosed. The electrical stimulation system comprises: an electrode controller, a carrier, a plurality of electrode units, and a buffer layer. The electrode units are disposed on the carrier, and each of the electrode units are electrically connected to the electrode controller independently. Besides, the electrode units and the carrier are covered with the buffer layer. When the electrode controller receive a control signal and drive the corresponding electrode units, the electrical currents output from the corresponding electrode units can electrically interfere with each other to generate a virtual channel between the corresponding electrode units.Type: ApplicationFiled: August 28, 2009Publication date: March 25, 2010Applicant: National Chiao Tung UniversityInventors: Charles Tak Ming Choi, Chen Hua Hsu, Yeng Ting Lee
-
Publication number: 20050053245Abstract: A 5.1 channel signal output mixer circuit for earphone using step gain amplification unit comprising a filtering gain unit, a mixing gain unit and a noise reduction gain unit, wherein said filtering gain unit obtaining a bandwidth-adjusted subwoofer signal from two waveform shaping circuits, said mixing gain mixing said subwoofer signal with an output signal of a front channel to form a first signal, said noise reduction gain receiving said first signal for noise removal to form a signal and outputting said signal to a speaker.Type: ApplicationFiled: October 24, 2003Publication date: March 10, 2005Inventors: Chen-Hua Hsu, Hsuan-Wei Huang
-
Patent number: 6798646Abstract: A rotary axle structure for portable computers mainly includes a member with an indented notch formed on the surface thereof and a sloped element with an elevation higher than the surface of the indented notch. The display device of a portable computer has a pivotal shalt located on the surface of the member. When the display device is lifted and turned about the first axis, the pivotal shaft may be lowered in the indented notch or be lifted to the sloped element to alter the distance between a leaning element in the first axis and the main body so that the display device may be lifted and moved away from the main body. Thus the display device may be swiveled without scraping the computer main body or the bottom of the display device.Type: GrantFiled: February 14, 2003Date of Patent: September 28, 2004Assignee: Lite-On Technology CorporationInventor: Chen-Hua Hsu
-
Publication number: 20040160733Abstract: A rotary axle structure for portable computers mainly includes a member with an indented notch formed on the surface thereof and a sloped element with an elevation higher than the surface of the indented notch. The display device of a portable computer has a pivotal shaft located on the surface of the member. When the display device is lifted and turned about the first axis, the pivotal shaft may be lowered in the indented notch or be lifted to the sloped element to alter the distance between a leaning element in the first axis and the main body so that the display device may be lifted and moved away from the main body. Thus the display device may be swiveled without scraping the computer main body or the bottom of the display device.Type: ApplicationFiled: February 14, 2003Publication date: August 19, 2004Inventor: Chen-Hua Hsu