Patents by Inventor Chen-Hui Chung

Chen-Hui Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10060683
    Abstract: An apparatus for positioning a heat sink includes a base plate, two support assemblies and a mounting assembly. The base plate placed on a circuit board has an opening. The two support assemblies are disposed on two opposing sides of the opening respectively, and exposed partly to the opening for supporting a heat sink thereon. The mounting assembly includes a frame and a positioning member. The frame contacts the support assembly, and the positioning member is fixed on the frame. When the mounting assemblies move in a preset direction, the positioning member engages the heat sink, and the support assemblies would be retrieved from the opening, whereby the heat sink would be lowered to the heat sink setting area via the opening.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: August 28, 2018
    Assignees: Inventec (Pudong) Technology Corporation, Inventec Corporation
    Inventors: Yu-Chung Huang, Chen-Hui Chung
  • Publication number: 20170153069
    Abstract: An apparatus for positioning a heat sink includes a base plate, two support assemblies and a mounting assembly. The base plate placed on a circuit board has an opening. The two support assemblies are disposed on two opposing sides of the opening respectively, and exposed partly to the opening for supporting a heat sink thereon. The mounting assembly includes a frame and a positioning member. The frame contacts the support assembly, and the positioning member is fixed on the frame. When the mounting assemblies move in a preset direction, the positioning member engages the heat sink, and the support assemblies would be retrieved from the opening, whereby the heat sink would be lowered to the heat sink setting area via the opening.
    Type: Application
    Filed: March 24, 2016
    Publication date: June 1, 2017
    Inventors: Yu-Chung HUANG, Chen-Hui CHUNG
  • Publication number: 20020102785
    Abstract: A semiconductor substrate is provided, and a gate oxide layer is formed on said semiconductor substrate. Next, a poly film is deposited on said gate oxide layer, and a photo-resist is formed on the poly film for defining a length of poly gate. Then, proceeding with an ion implant of the lightly doped drain (LDD) through the poly film into the structure by the photo-resist as a mask, so as to form a lightly doped drain region in the semiconductor substrate. Next, the width of the photo-resist layer is added to be as an ion-implanted mask. The poly film is etched to form a poly gate. Then, a source/drain region is formed in the semiconductor by a ion implanting, wherein the photo-resist can be treated by thermal method or resolution enhancement lithography assisted by chemical shrink (RELACS) process to control the profile width of the photo-resist.
    Type: Application
    Filed: January 26, 2001
    Publication date: August 1, 2002
    Inventors: James Ho, Chen-Hui Chung, Yei-Hsiung Lin
  • Patent number: 6184118
    Abstract: The present invention is a method for preventing the peeling phenomena of the Tungsten metal in the integrated circuit after the metal-etching process. A semiconductor's substrate is provided. An integrated circuit is manufactured in the substrate. An intermetal-dielectric layer is formed on the substrate and it has the contacting holes and the verniers. A barrier layer is also formed on the intermetal-dielectric layer. A tungsten-metal layer is then deposited on the barrier layer. The barrier layer and the tungsten-metal layer are etched back to form the plugs of the contacting holes, the spacers of the vernier and the metal stoppers, which cover the edges of the verniers. Thus, the metal stoppers have a good adhesion with the barrier layer and the peeling of the tungsten spacer is prevented.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: February 6, 2001
    Assignee: United Microelectronics Corp.
    Inventors: Chen-Hui Chung, Bing-Chang Wu
  • Patent number: 5859460
    Abstract: A tri-state read-only memory device and its fabrication method are disclosed herein. After a plurality of word lines are formed and spaced apart in parallel through patterning by a shielding layer, insulating blocks are formed to fill the trenches among the word lines. Then removing the shielding layer, sidewalls, of the insulating blocks are revealed, and spacers are formed on the sidewalls thereof. The spacers above the first state regions are removed to form the conductive width of the channel regions in three forms. By merely applying one code-implantation, the ROM device are coded into on of three states at the same time. In addition, the disposition of the insulating blocks by liquid-phase deposition prevents the misalignment that often occurs with the conventional method.
    Type: Grant
    Filed: April 14, 1997
    Date of Patent: January 12, 1999
    Assignee: United Microelectronics Corporation
    Inventors: Kuan-Cheng Su, Chen-Hui Chung, Yi-Chung Sheng
  • Patent number: 5756376
    Abstract: A method for removing a diffusion barrier layer on pad regions and diminishing the effect of plasma ions induced when removing a photoresist layer by a plasma asher. A two stage rapid thermal processing step is applied to the partially-removed diffusion barrier layer before a metal layer is formed. The first stage lasts a longer period of time at a lower temperature, for example, in the range of between 50 and 60 seconds at a temperature of about 600.degree. C. The second stage lasts a shorter period of time at a higher temperature, for example, in the range of between 20 and 30 seconds at a temperature of about 750.degree. C.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: May 26, 1998
    Assignee: United Microelectronics Corporation
    Inventors: Yi-Chung Sheng, Chen-Hui Chung, Kuan-Cheng Su
  • Patent number: 5705840
    Abstract: The invention describes recessed source/drain regions formed in trenches in the substrate that provide a smooth surface topology, smaller devils and improved device performance. The recessed source/drain regions have two conductive regions: the first upper lightly doped region on the trench sidewalls, and the second lower region under the trench bottom. In addition, two buried layers are formed between adjacent source/drain regions: a threshold voltage layer near the substrate surface and an anti-punchthrough layer formed at approximately the same depth as the lower source/drain regions on the trench bottoms. The upper lightly doped source/drain region and the anti-punchthrough layer have the effect of increasing the punchthrough voltage without increasing the threshold voltage. The upper and lower source/drain regions lower the overall resistivity of the source/drain allowing use of smaller line pitches and therefore smaller devils.
    Type: Grant
    Filed: April 23, 1996
    Date of Patent: January 6, 1998
    Assignee: United Microelectronics Corporation
    Inventors: Shing-Ren Shen, Kuan-Cheng Su, Chen-Hui Chung
  • Patent number: 5693551
    Abstract: A tri-state read-only memory device and its fabrication method are disclosed herein. After a plurality of word lines are formed and spaced apart in parallel through patterning by a shielding layer, insulating blocks are formed to fill the trenches among the word lines. Then removing the shielding layer, sidewalls of the insulating blocks are revealed, and spacers are formed on the sidewalls thereof. The spacers above the first state regions are removed to form the conductive width of the channel regions in three forms. By merely applying one code-implantation, the ROM device are coded into on of three states at the same time. In addition, the disposition of the insulating blocks by liquid-phase deposition prevents the misalignment that often occurs with the conventional method.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: December 2, 1997
    Assignee: United Microelectronics, Corporation
    Inventors: Kuan-Cheng Su, Chen-Hui Chung, Yi-Chung Sheng
  • Patent number: 5668030
    Abstract: A process for fabricating identification alphanumeric code markings on the substrate of mask ROM devices is disclosed. The fabrication process comprises first forming a deposited layer on the substrate of the mask ROM device. A photoresist layer is then formed on the deposited layer. A photomask layer by is then shaped by forming a pattern on the photoresist layer that reveals the channel regions of the memory cell transistors to be programmed into the blocking state, as well as reveals the graphical pattern of the alphanumeric code marking. An etching procedure then removes the portion of the deposited layer revealing the graphical pattern of the alphanumeric code markings. The photomask layer is then removed. A code implantation procedure may precede or follow the etching procedure to facilitate the programming of the memory cells of the mask ROM device.
    Type: Grant
    Filed: September 7, 1995
    Date of Patent: September 16, 1997
    Assignee: United Microelectronics Corporation
    Inventors: Chen-Hui Chung, Kuan-Cheng Su, Yi-Chung Sheng
  • Patent number: 5665995
    Abstract: A ROM device with an array of cells has conductors formed in a substrate. Insulation is formed, and parallel conductors are formed orthogonally to the line regions, as thin as about 2000 .ANG.. Glass insulation having a thickness of about 3000 .ANG. or less, formed over the conductors is is reflowed. Contacts and a metal layer on the glass insulation are formed. Resist is patterned and used for etching the resist pattern in the metal. Removal of the second resist and device passivation with a layer having a thickness of about 1000 .ANG., precede activation of the impurity ions by annealing the device at less than or equal to about 520.degree. C. in a reducing gas atmosphere. After resist removal, a second resist is formed and exposed with a custom code pattern to form a mask. Ions are implanted into the substrate with a dosage of between about 1 E 14 and 3 E 14 atoms/cm.sup.2 with an energy of less than or equal to 200 keV adjacent to the conductors through the openings in the insulation.
    Type: Grant
    Filed: April 27, 1995
    Date of Patent: September 9, 1997
    Assignee: United Microelectronics Corporation
    Inventors: Chen-Chiu Hsue, Shing-Ren Shev, Kuan-Cheng Su, Chen-Hui Chung
  • Patent number: 5654576
    Abstract: A method of manufacturing a code pattern on a semiconductor substrate with an array of substantially parallel buried bit lines integral therewith and with word lines above the buried bit lines, includes: forming a titanium nitride layer above the word lines, forming and patterning a code mask above the titanium nitride layer, implanting impurities into the substrate through openings in the code mask to form the code pattern, and performing rapid thermal annealing of the implant. The step height of the titanium nitride layer is employed to form the code identification on the substrate.
    Type: Grant
    Filed: November 16, 1995
    Date of Patent: August 5, 1997
    Assignee: United Microelectronics Corporation
    Inventors: Chen-Chiu Hsue, Yi-Chung Sheng, Shing-Ren Sheu, Chen-Hui Chung
  • Patent number: 5646436
    Abstract: A Read-Only Memory (ROM) device produced by self-aligned implantation. First, a non-coded mask ROM with a silicon substrate, a plurality of bit-lines formed in the substrate, a gate oxide layer formed on the bit-lines, and a plurality of word-lines formed on the gate oxide, which together form arrays of memory cells, is provided. Next, an aligning layer is formed above the word-lines. A photoresist is thereafter coated on the surface of the aligning layer. Then, portions of the photoresist not covered by a mask pattern are etched away to the aligning layer so as to provide openings exposing portions of the memory cells that will be programmed to operate in a first conduction state. Portions of the aligning layer exposed through the openings are then removed, after which impurities are implanted through the openings and into the substrate to enable the memory cells that are to operate in the first conduction state, and leave other non-programmed memory cells operating in a second conduction state.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: July 8, 1997
    Assignee: United Microelectronics Corporation
    Inventors: Gary Hong, Chen-Chiu Hsue, Chen-Hui Chung
  • Patent number: 5597753
    Abstract: An improved Read-Only-Memory (ROM) structure and a method of manufacturing said ROM device structure having an ultra-high-density of coded ROM cells, was achieved. The array of programmed ROM cells are composed of a single field effect transistor (FET) in each ROM cell. The improved ROM process utilizes the patterning of a ROM code insulating layer over each coded FET (cell) that is selected to remain in an off-state (nonconducting) when a gate voltage is applied. The remaining FETs (cells) have a thin gate oxide which switch to the on-state (conducting) when a gate voltage is applied. The thick ROM code insulating layer eliminates the need to code the FETs in the ROM memory cells by conventional high dose ion implantation. This eliminated the counter-doping of the buried bit lines by the implantation allowing for much tighter ground rules for the spacing between buried bit line.
    Type: Grant
    Filed: December 27, 1994
    Date of Patent: January 28, 1997
    Assignee: United Microelectronics Corporation
    Inventors: Shing-Ren Sheu, Kuan-Cheng Su, Chen-Hui Chung, Yi-Chung Sheng
  • Patent number: 5585297
    Abstract: This is a method of manufacturing a multiple state MASK ROM semiconductor device on a P-type semiconductor substrate. The substrate includes an array of parallel buried bit lines oriented in a first direction. The process includes forming a gate oxide layer over the substrate including the buried bit lines; word lines over the gate oxide layer oriented orthogonally to the direction of the array of bit lines. Then form a first patterned implant mask over the device with a first set of openings through the mask. Ion implant dopant of a first dosage level through the openings in the mask to form implant doped regions of a first dosage level in the substrate. Form a second patterned implant mask over the device with a second set of openings through the mask. Then ion implant a dopant of a second dosage level through the openings in the mask to form implanted doped regions of a second dosage level in the substrate, the second dosage level being substantially different from the first dosage level.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: December 17, 1996
    Assignee: United Microelectronics Corporation
    Inventors: Yi-Chung Sheng, Chen-Hui Chung, Kuan-Cheng Su
  • Patent number: 5576235
    Abstract: A ROM coding method with self-aligned implantation. First, a non-coded mask ROM with a silicon substrate, a plurality of bit-lines formed in the substrate, a gate oxide layer formed on the bit-lines, and a plurality of word-lines formed on the gate oxide, which together form arrays of memory cells, is provided. Next, an aligning layer is formed above the word-lines. A photoresist is thereafter coated on the surface of the aligning layer. Then, portions of the photoresist not covered by a mask pattern are etched away to the aligning layer so as to provide openings exposing portions of the memory cells that will be programmed to operate in a first conduction state. Portions of the aligning layer exposed through the openings are then removed, after which impurities are implanted through the openings and into the substrate to enable the memory cells that are to operate in the first conduction state, and leave other non-programmed memory cells operating in a second conduction state.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: November 19, 1996
    Assignee: United Microelectronics Corporation
    Inventors: Gary Hong, Chen-Chiu Hsue, Chen-Hui Chung
  • Patent number: 5567970
    Abstract: A ROM device includes cells with buried bit lines in a semiconductor substrate. A thin insulating layer covers the substrate has closely spaced, parallel, word lines formed thereon arranged orthogonally relative to the bit lines. The word lines are covered with reflowed glass insulating layers about 2500.ANG. thick. The glass insulating layers comprise a sublayer of undoped glass and an overlayer of doped glass, the underlayer about 500.ANG.-1500.ANG. thick and the overlayer about 1000.ANG.-1500.ANG. thick. An etched, patterned metal layer is formed on the glass insulating layer. The overlayer has been substantially removed by etching where the metal layer has been etched. An ion implantation pattern has been implanted into the substrate adjacent to the conductive lines. The device has been passivated. The implanted impurity ions having been activated by annealing the device.
    Type: Grant
    Filed: April 27, 1995
    Date of Patent: October 22, 1996
    Assignee: United Microelectronics Corporation
    Inventors: Shing-Ren Sheu, Chen-Chiu Hsue, Chen-Hui Chung
  • Patent number: 5545580
    Abstract: A multi-state read-only-memory device and a method for fabricating the same is suitable for forming on a semiconductor substrate. The read-only memory device is provided with bit lines and word lines which are mutually intersecting. In accordance with the present invention, multiple polysilicon selective deposition procedures are utilized to form a plurality of protrusion portions onto the word lines but with multiple thicknesses. Then, one implantation procedure is applied to program the device into multiple states at the same time without incurring misalignment problems that result in inaccuracy.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: August 13, 1996
    Assignee: United Microelectronics Corporation
    Inventors: Yi-Chung Sheng, Chen-Hui Chung, Kuan-Cheng Su
  • Patent number: 5536669
    Abstract: A method for fabricating ROM devices with self-aligned code implants comprises the steps of: forming an oxide layer over a silicon substrate; forming a plurality of deposition selecting strips over the oxide layer; forming a dielectric between the plurality of deposition selecting strips to thereby produce a plurality of dielectric strips; removing the deposition selecting strips; forming a number of code diffusion regions in the silicon substrate; and forming a plurality of word lines between the plurality of dielectric strips. Since the code diffusion regions are formed by implanting ions through the dielectric strips, the shielding of the dielectric strips can prevent the outspreading of impurities due to code mask mis-alignment. Therefore, the positions of code diffusion regions can be well controlled beneath the word lines.
    Type: Grant
    Filed: July 26, 1995
    Date of Patent: July 16, 1996
    Assignee: United Microelectronics Corporation
    Inventors: Kuan-Cheng Su, Yi-Chung Sheng, Chen-Hui Chung
  • Patent number: 5504030
    Abstract: A method of fabricating memory cells of a mask ROM device. A plurality of source/drain regions extending along a first direction is formed by implanting impurities into a semiconductor substrate, constituting bit lines of the memory cells. A code oxide layer is formed on a designated area of the semiconductor substrate defined by a barrier layer using a liquid-phase deposition process, whereby a multi-state mask ROM is fabricated by repeatedly performing the liquid-phase deposition process to form a series of coding oxide layers having increasing thicknesses. A gate oxide layer is formed on a portion of the semiconductor substrate not covered by the coding oxide layers. The thickness of the gate oxide layer is smaller than that of the coding oxide layers. A plurality of gate electrodes extending along a second direction orthogonal to the first direction is formed by depositing and patterning a conducting layer on the coding oxide layer and the gate oxide layer, constituting word lines of said memory cells.
    Type: Grant
    Filed: July 21, 1995
    Date of Patent: April 2, 1996
    Assignee: United Microelectronics Corporation
    Inventors: Chen-Hui Chung, Kuan-Cheng Su, Yi-Chung Sheng
  • Patent number: D915198
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: April 6, 2021
    Inventor: Chen-Hui Chung