Patents by Inventor CHEN-JUNG WANG
CHEN-JUNG WANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12142565Abstract: Vias, along with methods for fabricating vias, are disclosed that exhibit reduced capacitance and resistance. An exemplary interconnect structure includes a first source/drain contact and a second source/drain contact disposed in a dielectric layer. The first source/drain contact physically contacts a first source/drain feature and the second source/drain contact physically contacts a second source/drain feature. A first via having a first via layer configuration, a second via having a second via layer configuration, and a third via having a third via layer configuration are disposed in the dielectric layer. The first via and the second via extend into and physically contact the first source/drain contact and the second source/drain contact, respectively. A first thickness of the first via and a second thickness of the second via are the same. The third via physically contacts a gate structure, which is disposed between the first source/drain contact and the second source/drain contact.Type: GrantFiled: July 27, 2022Date of Patent: November 12, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTDInventors: Shih-Che Lin, Po-Yu Huang, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Wei-Jung Lin, Chen-Yuan Kao
-
Publication number: 20240371979Abstract: A method includes forming isolation regions extending into a semiconductor substrate, wherein semiconductor strips are located between the isolation regions, and forming a dielectric dummy strip between the isolation regions, recessing the isolation regions. Some portions of the semiconductor strips protrude higher than top surfaces of the recessed isolation regions to form protruding semiconductor fins, and a portion of the dielectric dummy strip protrudes higher than the top surfaces of the recessed isolation regions to form a dielectric dummy fin. The method further includes etching the dielectric dummy fin so that a top width of the dielectric dummy fin is smaller than a bottom width of the dielectric dummy fin. A gate stack is formed on top surfaces and sidewalls of the protruding semiconductor fins and the dielectric dummy fin.Type: ApplicationFiled: July 16, 2024Publication date: November 7, 2024Inventors: Shih-Yao Lin, Pei-Hsiu Wu, Chih Ping Wang, Chih-Han Lin, Jr-Jung Lin, Yun Ting Chou, Chen-Yu Wu
-
Patent number: 12113122Abstract: A method includes forming isolation regions extending into a semiconductor substrate, wherein semiconductor strips are located between the isolation regions, and forming a dielectric dummy strip between the isolation regions, recessing the isolation regions. Some portions of the semiconductor strips protrude higher than top surfaces of the recessed isolation regions to form protruding semiconductor fins, and a portion of the dielectric dummy strip protrudes higher than the top surfaces of the recessed isolation regions to form a dielectric dummy fin. The method further includes etching the dielectric dummy fin so that a top width of the dielectric dummy fin is smaller than a bottom width of the dielectric dummy fin. A gate stack is formed on top surfaces and sidewalls of the protruding semiconductor fins and the dielectric dummy fin.Type: GrantFiled: March 3, 2023Date of Patent: October 8, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Shih-Yao Lin, Pei-Hsiu Wu, Chih Ping Wang, Chih-Han Lin, Jr-Jung Lin, Yun Ting Chou, Chen-Yu Wu
-
Patent number: 12106787Abstract: The present disclosure generally relate to a read head and methods of forming thereof. Upon forming a dual free layer (DFL) sensor and a rear hard bias (RHB) structure on a seed layer, a photoresist is deposited on the DFL read head and the RHB structure. A refill layer is deposited on the photoresist and the seed layer adjacent to the DFL sensor and the RHB structure. Portions of the refill layer disposed on one or more sidewalls of the photoresist are removed, and a SiOx cap layer is deposited on the refill layer and on the one or more sidewalls. The photoresist is removed, and the SiOx cap layer and top surfaces of the DFL sensor and the RHB structure are planarized to form a substantially flat topography. The SiOx cap layer acts as a stop layer for the refill layer, and remains in the finished read head.Type: GrantFiled: August 1, 2023Date of Patent: October 1, 2024Assignee: Western Digital Technologies, Inc.Inventors: Yung-Hung Wang, Chih-Ching Hu, Hongxue Liu, Guanxiong Li, Chen-Jung Chien, Ming Mao, Ming Jiang
-
Patent number: 12075707Abstract: A method for fabricating magnetic tunnel junction (MTJ) pillars is provided. The method includes following operations. A MTJ stack of layers including a first magnetic layer, a tunnel barrier layer overlying the first magnetic layer, and a second magnetic layer overlying the tunnel barrier layer is provided. A first patterning step is carried out by using a reactive ion etching. In the first patterning step, the second magnetic layer and the tunnel barrier layer are etched to form one or more pillar structures and a protection layer is formed and covers sidewalls of the pillar structures.Type: GrantFiled: July 25, 2023Date of Patent: August 27, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Jiann-Horng Lin, Kun-Yi Li, Han-Ting Lin, Huan-Just Lin, Chen-Jung Wang, Sin-Yi Yang
-
Publication number: 20240237551Abstract: In an embodiment, a method includes: forming a first inter-metal dielectric (IMD) layer over a semiconductor substrate; forming a bottom electrode layer over the first IMD layer; forming a magnetic tunnel junction (MTJ) film stack over the bottom electrode layer; forming a first top electrode layer over the MTJ film stack; forming a protective mask covering a first region of the first top electrode layer, a second region of the first top electrode layer being uncovered by the protective mask; forming a second top electrode layer over the protective mask and the first top electrode layer; and patterning the second top electrode layer, the first top electrode layer, the MTJ film stack, the bottom electrode layer, and the first IMD layer with an ion beam etching (IBE) process to form a MRAM cell, where the protective mask is etched during the IBE process.Type: ApplicationFiled: March 25, 2024Publication date: July 11, 2024Inventors: Tai-Yen Peng, Hui-Hsien Wei, Han-Ting Lin, Sin-Yi Yang, Yu-Shu Chen, An-Shen Chang, Qiang Fu, Chen-Jung Wang
-
Patent number: 11968908Abstract: In an embodiment, a method includes: forming a first inter-metal dielectric (IMD) layer over a semiconductor substrate; forming a bottom electrode layer over the first IMD layer; forming a magnetic tunnel junction (MTJ) film stack over the bottom electrode layer; forming a first top electrode layer over the MTJ film stack; forming a protective mask covering a first region of the first top electrode layer, a second region of the first top electrode layer being uncovered by the protective mask; forming a second top electrode layer over the protective mask and the first top electrode layer; and patterning the second top electrode layer, the first top electrode layer, the MTJ film stack, the bottom electrode layer, and the first IMD layer with an ion beam etching (IBE) process to form a MRAM cell, where the protective mask is etched during the IBE process.Type: GrantFiled: June 30, 2022Date of Patent: April 23, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tai-Yen Peng, Hui-Hsien Wei, Han-Ting Lin, Sin-Yi Yang, Yu-Shu Chen, An-Shen Chang, Qiang Fu, Chen-Jung Wang
-
Patent number: 11944017Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes an insulation layer. A bottom electrode via is disposed in the insulation layer. The bottom electrode via includes a conductive portion and a capping layer over the conductive portion. A barrier layer surrounds the bottom electrode via. A magnetic tunneling junction (MTJ) is disposed over the bottom electrode via.Type: GrantFiled: May 5, 2023Date of Patent: March 26, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Tai-Yen Peng, Yu-Shu Chen, Chien Chung Huang, Sin-Yi Yang, Chen-Jung Wang, Han-Ting Lin, Jyu-Horng Shieh, Qiang Fu
-
Publication number: 20240099150Abstract: A method includes forming Magnetic Tunnel Junction (MTJ) stack layers, which includes depositing a bottom electrode layer; depositing a bottom magnetic electrode layer over the bottom electrode layer; depositing a tunnel barrier layer over the bottom magnetic electrode layer; depositing a top magnetic electrode layer over the tunnel barrier layer; and depositing a top electrode layer over the top magnetic electrode layer. The method further includes patterning the MTJ stack layers to form a MTJ; and performing a passivation process on a sidewall of the MTJ to form a protection layer. The passivation process includes reacting sidewall surface portions of the MTJ with a process gas comprising elements selected from the group consisting of oxygen, nitrogen, carbon, and combinations thereof.Type: ApplicationFiled: November 28, 2023Publication date: March 21, 2024Inventors: Tai-Yen Peng, Yu-Shu Chen, Sin-Yi Yang, Chen-Jung Wang, Chien Chung Huang, Han-Ting Lin, Jyu-Horng Shieh, Qiang Fu
-
Publication number: 20240030073Abstract: In a method of patterning an integrated circuit, test layer thickness variation data is received when a test layer with a known thickness disposed over a test substrate undergoes tilted angle plasma etching. Overlay offset data per substrate locations caused by the tilted angle plasma etching is determined. The overlay offset data is determined based on the received thickness variation data. The overlay offset data is associated with an overlay between first circuit patterns of a first layer on the semiconductor substrate and corresponding second circuit patterns of a second layer disposed over the first layer on the substrate. A location of the substrate is adjusted based on the overlay offset data during a lithography operation to pattern a resist layer over the second layer. The second layer is patterned based on the projected layout patterns of the reticle and using the tilted angle plasma etching.Type: ApplicationFiled: July 19, 2023Publication date: January 25, 2024Inventors: Wei-De HO, Pei-Sheng Tang, Han-Wei Wu, Yuan-Hsiang Lung, Hua-Tai Lin, Chen-Jung Wang
-
Publication number: 20240023457Abstract: An integrated circuit includes a metallization pattern having first and second conductive features, an etch stop layer over the metallization pattern, a memory device, a bottom electrode via, a third conductive feature, and a dielectric feature. The etch stop layer has first and second portions over the first and second conductive features, respectively. The bottom electrode via is in the first portion of the etch stop layer and electrically connecting the memory device over the first portion of the etch stop layer to the first conductive feature. The third conductive feature is in the second portion of the etch stop layer and electrically connected to the second conductive feature. The dielectric feature is between the first and second portions of the etch stop layer and in contact with sidewalls of the first and second portions of the etch stop layer.Type: ApplicationFiled: July 28, 2023Publication date: January 18, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Tai-Yen PENG, Chien-Chung HUANG, Yu-Shu CHEN, Sin-Yi YANG, Chen-Jung WANG, Han-Ting LIN, Chih-Yuan TING, Jyu-Horng SHIEH, Hui-Hsien WEI
-
Patent number: 11856865Abstract: A method includes forming Magnetic Tunnel Junction (MTJ) stack layers, which includes depositing a bottom electrode layer; depositing a bottom magnetic electrode layer over the bottom electrode layer; depositing a tunnel barrier layer over the bottom magnetic electrode layer; depositing a top magnetic electrode layer over the tunnel barrier layer; and depositing a top electrode layer over the top magnetic electrode layer. The method further includes patterning the MTJ stack layers to form a MTJ; and performing a passivation process on a sidewall of the MTJ to form a protection layer. The passivation process includes reacting sidewall surface portions of the MTJ with a process gas comprising elements selected from the group consisting of oxygen, nitrogen, carbon, and combinations thereof.Type: GrantFiled: July 20, 2022Date of Patent: December 26, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tai-Yen Peng, Yu-Shu Chen, Sin-Yi Yang, Chen-Jung Wang, Chien Chung Huang, Han-Ting Lin, Jyu-Horng Shieh, Qiang Fu
-
Publication number: 20230380293Abstract: A method for fabricating magnetic tunnel junction (MTJ) pillars is provided. The method includes following operations. A MTJ stack of layers including a first magnetic layer, a tunnel barrier layer overlying the first magnetic layer, and a second magnetic layer overlying the tunnel barrier layer is provided. A first patterning step is carried out by using a reactive ion etching. In the first patterning step, the second magnetic layer and the tunnel barrier layer are etched to form one or more pillar structures and a protection layer is formed and covers sidewalls of the pillar structures.Type: ApplicationFiled: July 25, 2023Publication date: November 23, 2023Inventors: JIANN-HORNG LIN, KUN-YI LI, HAN-TING LIN, HUAN-JUST LIN, CHEN-JUNG WANG, SIN-YI YANG
-
Patent number: 11800812Abstract: An integrated circuit includes a dielectric layer, a memory device, and a resistor. The memory device includes a bottom electrode via, a bottom electrode, a resistance switching element, and a top electrode. The bottom electrode via is in the dielectric layer. The dielectric layer has a first portion extending along sidewalls of the bottom electrode via, a second portion extending laterally from the first portion, and a third portion. The bottom electrode is over the bottom electrode via. The resistance switching element is over the bottom electrode. The top electrode is over the resistance switching element. The resistor is over the third portion of the dielectric layer. A thickness of the third portion of the dielectric layer is greater than a thickness of the second portion of the dielectric layer.Type: GrantFiled: March 7, 2022Date of Patent: October 24, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Tai-Yen Peng, Chien-Chung Huang, Yu-Shu Chen, Sin-Yi Yang, Chen-Jung Wang, Han-Ting Lin, Chih-Yuan Ting, Jyu-Horng Shieh, Hui-Hsien Wei
-
Patent number: 11770977Abstract: A method for fabricating magnetic tunnel junction (MTJ) pillars is provided. The method includes following operations. A MTJ stack of layers including a first magnetic layer, a tunnel barrier layer overlying the first magnetic layer, and a second magnetic layer overlying the tunnel barrier layer is provided. A first patterning step is carried out by using a reactive ion etching. In the first patterning step, the second magnetic layer and the tunnel barrier layer are etched to form one or more pillar structures and a protection layer is formed and covers sidewalk of the pillar structures.Type: GrantFiled: October 27, 2020Date of Patent: September 26, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Jiann-Horng Lin, Kun-Yi Li, Han-Ting Lin, Huan-Just Lin, Chen-Jung Wang, Sin-Yi Yang
-
Patent number: 11749570Abstract: In a method of patterning an integrated circuit, test layer thickness variation data is received when a test layer with a known thickness disposed over a test substrate undergoes tilted angle plasma etching. Overlay offset data per substrate locations caused by the tilted angle plasma etching is determined. The overlay offset data is determined based on the received thickness variation data. The overlay offset data is associated with an overlay between first circuit patterns of a first layer on the semiconductor substrate and corresponding second circuit patterns of a second layer disposed over the first layer on the substrate. A location of the substrate is adjusted based on the overlay offset data during a lithography operation to pattern a resist layer over the second layer. The second layer is patterned based on the projected layout patterns of the reticle and using the tilted angle plasma etching.Type: GrantFiled: August 31, 2021Date of Patent: September 5, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wei-De Ho, Pei-Sheng Tang, Han-Wei Wu, Yuan-Hsiang Lung, Hua-Tai Lin, Chen-Jung Wang
-
Publication number: 20230276715Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes an insulation layer. A bottom electrode via is disposed in the insulation layer. The bottom electrode via includes a conductive portion and a capping layer over the conductive portion. A barrier layer surrounds the bottom electrode via. A magnetic tunneling junction (MTJ) is disposed over the bottom electrode via.Type: ApplicationFiled: May 5, 2023Publication date: August 31, 2023Inventors: TAI-YEN PENG, YU-SHU CHEN, CHIEN CHUNG HUANG, SIN-YI YANG, CHEN-JUNG WANG, HAN-TING LIN, JYU-HORNG SHIEH, QIANG FU
-
Publication number: 20230263068Abstract: A method of forming integrated circuits includes forming Magnetic Tunnel Junction (MTJ) stack layers, depositing a conductive etch stop layer over the MTJ stack layers, depositing a conductive hard mask over the conductive etch stop layer, and patterning the conductive hard mask to form etching masks. The patterning is stopped by the conductive etch stop layer. The method further includes etching the conducive etch stop layer using the etching masks to define patterns, and etching the MTJ stack layers to form MTJ stacks.Type: ApplicationFiled: April 19, 2023Publication date: August 17, 2023Inventors: Tai-Yen Peng, Sin-Yi Yang, Chen-Jung Wang, Yu-Shu Chen, Chien Chung Huang, Han-Ting Lin, Jyu-Horng Shieh, Chih-Yuan Ting
-
Patent number: 11683991Abstract: The present disclosure provides a method for manufacturing semiconductor structure, including forming an insulation layer, forming a first via trench in the insulation layer, forming a barrier layer in the first via trench, forming a bottom electrode via in the first via trench, forming a magnetic tunneling junction (MTJ) layer above the bottom electrode via, and performing an ion beam etching operation, including patterning the MTJ layer to form an MTJ and removing a portion of the insulation layer from a top surface.Type: GrantFiled: November 24, 2020Date of Patent: June 20, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Tai-Yen Peng, Yu-Shu Chen, Chien Chung Huang, Sin-Yi Yang, Chen-Jung Wang, Han-Ting Lin, Jyu-Horng Shieh, Qiang Fu
-
Patent number: D1047897Type: GrantFiled: June 24, 2021Date of Patent: October 22, 2024Assignee: GOGORO INC.Inventors: Chien-Chih Weng, Chen-Hsin Hsu, Yu-Jung Wang