Patents by Inventor Chen-Lin Hsu

Chen-Lin Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240194646
    Abstract: A semiconductor package includes a substrate, first bumps, a first chip, metal pillars, second bumps and a second chip. The substrate includes first and second conductive pads which are located on a top surface of the substrate. Both ends of the first bumps are connected to the first conductive pads and the first chip, respectively. Both ends of the metal pillars are connected to the second conductive pads and one end of the second bumps, respectively. A cross-sectional area of each of the metal pillars is larger than that of each of the second bumps. The second chip is connected to the other end of the second bumps and located above the first chip.
    Type: Application
    Filed: September 29, 2023
    Publication date: June 13, 2024
    Inventors: Chin-Tang Hsieh, Lung-Hua Ho, Chih-Ming Kuo, Chen-Yu Wang, Chih-Hao Chiang, Pai-Sheng Cheng, Kung-An Lin, Chun-Ting Kuo, Yu-Hui Hu, Wen-Cheng Hsu
  • Patent number: 12009033
    Abstract: A memory device and method of making the same are disclosed. The memory device includes transistor devices located in both a memory region and a logic region of the device. Transistor devices in the memory region include sidewall spacers having a first oxide layer over a side surface of a gate structure, a first nitride layer over the first oxide layer, a second oxide layer over the first nitride layer, and a second nitride layer over the second oxide layer. Transistor devices in the logic region include sidewall spacers having a first oxide layer over a side surface of a gate structure, a first nitride layer over the first oxide layer, and a second nitride layer over the first nitride layer.
    Type: Grant
    Filed: June 20, 2023
    Date of Patent: June 11, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chen-Ming Huang, Wen-Tuo Huang, Yu-Hsiang Yang, Yu-Ling Hsu, Wei-Lin Chang, Chia-Sheng Lin, ShihKuang Yang, Yu-Chun Chang, Hung-Ling Shih, Po-Wei Liu, Shih-Hsien Chen
  • Patent number: 12002797
    Abstract: A LED device includes multiple LED chips each including opposite first and second surfaces, a side surface, and an electrode assembly disposed on the second surface and including first and second electrodes. The first surface of each of the LED chips is a light exit surface. The LED device further includes an electric circuit layer assembly disposed on the second surfaces of the LED chips and having opposite first and second surfaces and a side surface. The first surface is electrically connected to the first and second electrodes. The LED device further includes an encapsulating layer enclosing the LED chips and the electric circuit layer assembly to expose the second surface of the electric circuit layer assembly.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: June 4, 2024
    Assignee: QUANZHOU SAN'AN SEMICONDUCTOR TECHNOLOGY CO., LTD.
    Inventors: Junpeng Shi, Chen-Ke Hsu, Chang-Chin Yu, Yanqiu Liao, Zhenduan Lin, Zhaowu Huang, Senpeng Huang
  • Publication number: 20240128216
    Abstract: A bonding structure that may be used to form 3D-IC devices is formed using first oblong bonding pads on a first substrate and second oblong bonding pads one a second substrate. The first and second oblong bonding pads are laid crosswise, and the bond is formed. Viewed in a first cross-section, the first bonding pad is wider than the second bonding pad. Viewed in a second cross-section at a right angle to the first, the second bonding pad is wider than the first bonding pad. Making the bonding pads oblong and angling them relative to one another reduces variations in bonding area due to shifts in alignment between the first substrate and the second substrate. The oblong shape in a suitable orientation may also be used to reduce capacitive coupling between one of the bonding pads and nearby wires.
    Type: Application
    Filed: January 4, 2023
    Publication date: April 18, 2024
    Inventors: Hao-Lin Yang, Kuan-Chieh Huang, Wei-Cheng Hsu, Tzu-Jui Wang, Ching-Chun Wang, Hsiao-Hui Tseng, Chen-Jong Wang, Dun-Nian Yaung
  • Patent number: 11956541
    Abstract: A control method of a driving mechanism is provided, including: the driving mechanism provides a first electrical signal from a control assembly to the driving mechanism to move the movable portion into an initial position relative to the fixed portion, wherein the control assembly includes a control unit and a position sensing unit; the status signal of an inertia sensing unit is read; the control unit sends the status signal to the control unit to calculate a target position; the control unit provides a second electrical signal to the driving assembly according to the target position for driving the driving assembly; a position signal is sent from the position sensing unit to the control unit; the control unit provides a third electric signal to the driving assembly to drive the driving assembly according the position signal.
    Type: Grant
    Filed: January 26, 2023
    Date of Patent: April 9, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chen-Hsien Fan, Sung-Mao Tsai, Yueh-Lin Lee, Yu-Chiao Lo, Mao-Kuo Hsu, Ching-Chieh Huan, Yi-Chun Cheng
  • Patent number: 11956972
    Abstract: A semiconductor memory device includes a substrate having a memory area and a logic circuit area thereon, a first interlayer dielectric layer on the substrate, and a second interlayer dielectric layer on the substrate. An embedded memory cell structure is disposed within the memory area between the first interlayer dielectric layer and the second interlayer dielectric layer. The second interlayer dielectric layer includes a first portion covering the embedded memory cell structure within the memory area and a second portion covering the logic circuit area. A top surface of the first portion is coplanar with a top surface of the second portion.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Si-Han Tsai, Ching-Hua Hsu, Chen-Yi Weng, Po-Kai Hsu
  • Publication number: 20240107890
    Abstract: A method for fabricating semiconductor device includes the steps of forming an inter-metal dielectric (IMD) layer on a substrate, forming a metal interconnection in the IMD layer, forming a magnetic tunneling junction (MTJ) on the metal interconnection, and performing a trimming process to shape the MTJ. Preferably, the MTJ includes a first slope and a second slope and the first slope is less than the second slope.
    Type: Application
    Filed: October 24, 2022
    Publication date: March 28, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Ching-Hua Hsu, Jing-Yin Jhang
  • Publication number: 20240099154
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Applicant: UNITED MICROELECTRONICS CORP
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang
  • Publication number: 20240079434
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor including first chip and a second chip. The first chip includes a first substrate, a plurality of photodetectors disposed in the first substrate, a first interconnect structure disposed on a front side of the first substrate, and a first bond structure disposed on the first interconnect structure. The second chip underlies the first chip. The second chip includes a second substrate, a plurality of semiconductor devices disposed on the second substrate, a second interconnect structure disposed on a front side of the second substrate, and a second bond structure disposed on the second interconnect structure. A first bonding interface is disposed between the second bond structure and the first bond structure. The second interconnect structure is electrically coupled to the first interconnect structure by way of the first and second bond structures.
    Type: Application
    Filed: January 5, 2023
    Publication date: March 7, 2024
    Inventors: Hao-Lin Yang, Kuan-Chieh Huang, Wei-Cheng Hsu, Tzu-Jui Wang, Chen-Jong Wang, Dun-Nian Yaung, Yu-Chun Chen
  • Patent number: 11917923
    Abstract: A magnetoresistive random access memory (MRAM) structure, including a substrate and multiple MRAM cells on the substrate, wherein the MRAM cells are arranged in a memory region adjacent to a logic region. An ultra low-k (ULK) layer covers the MRAM cells, wherein the surface portion of ultra low-k layer is doped with fluorine, and dents are formed on the surface of ultra low-k layer at the boundaries between the memory region and the logic region.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: February 27, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Ching-Hua Hsu, Si-Han Tsai, Shun-Yu Huang, Chen-Yi Weng, Ju-Chun Fan, Che-Wei Chang, Yi-Yu Lin, Po-Kai Hsu, Jing-Yin Jhang, Ya-Jyuan Hung
  • Patent number: 11811321
    Abstract: A spread spectrum switching power converter circuit includes: a power stage circuit which includes an inductor and a power switch and is configured to switch the power switch according to a switching signal having spread spectrum for power conversion; a variable frequency oscillator, which generates a spread spectrum clock signal according to a spread spectrum control signal; a spread spectrum control circuit, which generates the spread spectrum control signal according to a first clock signal and a second clock signal; and a pulse width modulation circuit, configured to generate the switching signal according to a feedback signal based on the spread spectrum clock signal. The spread spectrum control circuit generates the spread spectrum control signal by sampling and combining a periodic waveform and a random waveform. The random waveform is generated according to the first clock signal and the periodic waveform is generated according to the second clock signal.
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: November 7, 2023
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chen-Lin Hsu, Chia-Chun Lee
  • Publication number: 20220416652
    Abstract: A switching power converter includes: a power stage circuit, including at least one transistor which is configured to operably switch an inductor to convert an input power to an output power; and an active EMI filter circuit, including at least one amplifier, wherein the at least one amplifier is configured to operably sense a noise input signal which is related to a switching noise caused by the switching of the power stage circuit, and amplify the noise input signal to generate a noise canceling signal, wherein the noise canceling signal is injected into an input node of the switching power converter, so as to suppress the switching noise and thus reducing EMI, wherein the input power is provided through the input node to the power stage circuit.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 29, 2022
    Inventors: Chen-Pin Huang, Chia-Chun Li, Chen-Lin Hsu, Hung-Yu Cheng, Wan-Hsuan Yang
  • Publication number: 20220360173
    Abstract: A spread spectrum switching power converter circuit includes: a power stage circuit which includes an inductor and a power switch and is configured to switch the power switch according to a switching signal having spread spectrum for power conversion; a variable frequency oscillator, which generates a spread spectrum clock signal according to a spread spectrum control signal; a spread spectrum control circuit, which generates the spread spectrum control signal according to a first clock signal and a second clock signal; and a pulse width modulation circuit, configured to generate the switching signal according to a feedback signal based on the spread spectrum clock signal. The spread spectrum control circuit generates the spread spectrum control signal by sampling and combining a periodic waveform and a random waveform. The random waveform is generated according to the first clock signal and the periodic waveform is generated according to the second clock signal.
    Type: Application
    Filed: May 4, 2022
    Publication date: November 10, 2022
    Inventors: Chen-Lin Hsu, Chia-Chun Lee