Patents by Inventor Chen-Lun Lin

Chen-Lun Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936418
    Abstract: A radar signal processing system with a self-interference cancelling function includes an analog front end (AFE) processor, an analog to digital converter (ADC), an adaptive interference canceller (AIC), and a digital to analog converter (DAC). The AFE processor receives an original input signal and generates an analog input signal. The ADC converts the analog input signal to a digital input signal. The AIC generates a digital interference signal digital interference signal by performing an adaptive interference cancellation process according to the digital input signal. The DAC converts the digital interference signal to an analog interference signal. Finally, the analog interference signal is fed back to the AFE and cancelled from the original input signal in the AFE processor while performing the front end process, reducing the interference of the static interference from the leaking of a close-by transmitter during the front end process.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: March 19, 2024
    Assignee: KAIKUTEK INC.
    Inventors: Mike Chun-Hung Wang, Chun-Hsuan Kuo, Mohammad Athar Khalil, Wen-Sheng Cheng, Chen-Lun Lin, Chin-Wei Kuo, Ming Wei Kung, Khoi Duc Le
  • Publication number: 20220345173
    Abstract: A radar signal processing system with a self-interference cancelling function includes an analog front end (AFE) processor, an analog to digital converter (ADC), an adaptive interference canceller (AIC), and a digital to analog converter (DAC). The AFE processor receives an original input signal and generates an analog input signal. The ADC converts the analog input signal to a digital input signal. The AIC generates a digital interference signal digital interference signal by performing an adaptive interference cancellation process according to the digital input signal. The DAC converts the digital interference signal to an analog interference signal. Finally, the analog interference signal is fed back to the AFE and cancelled from the original input signal in the AFE processor while performing the front end process, reducing the interference of the static interference from the leaking of a close-by transmitter during the front end process.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 27, 2022
    Applicant: KaiKuTek Inc.
    Inventors: Mike Chun-Hung WANG, Chun-Hsuan KUO, Mohammad Athar KHALIL, Wen-Sheng CHENG, Chen-Lun LIN, Chin-Wei KUO, Ming Wei KUNG, Khoi Duc LE
  • Patent number: 11444573
    Abstract: The invention discloses an oscillator, including a voltage switching circuit, a voltage adjustment circuit and a frequency generation circuit. The voltage switching circuit receives an output voltage signal whereby the output voltage signal switches a first input voltage signal to a first voltage level signal and switches a second input voltage signal to a second voltage level signal. The voltage adjustment circuit receives the first voltage level signal and the second voltage level signal, whereby the first voltage level signal and the second voltage level signal generate the first adjustment voltage signal and the second adjustment voltage signal. The frequency generation circuit is connected to the voltage adjustment circuit, and receives the first adjustment voltage signal and the second adjustment voltage signal to generate the first output frequency signal and the second output frequency signal according to the first adjustment voltage signal and the second adjustment voltage signal.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: September 13, 2022
    Assignee: KaiKuTek Inc.
    Inventors: Mike Chun-Hung Wang, Chen-Lun Lin, Guan-Sian Wu, Chin-Wei Kuo, Ming Wei Kung, Wen-Sheng Cheng, Chun-Hsuan Kuo
  • Patent number: 10771070
    Abstract: A low voltage inverter-based amplifier includes a first inverter-based amplification module, a second inverter-based amplification module, an inverter-based feedforward module, and an inverter-based common mode detector. The first inverter-based amplification module receives an input signal. The second inverter-based amplification module receives the input signal through the inverter-based feedforward module, and receives a first output signal from the first inverter-based amplification module. The inverter-based common mode detector receives an amplified signal from the second inverter-based amplification module, and outputs a feedback signal to the second inverter-based amplification module. Since the first and the second inverter-based amplification modules are both inverter-based, the supply voltage of the low voltage inverter-based amplifier is provided to supply one PMOS and one NMOS for normal operation.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: September 8, 2020
    Assignee: KAIKUTEK INC.
    Inventors: Pang-Ning Chen, Chen-Lun Lin, Ying-Chia Chen, Wei-Jyun Wang, Mike Chun-Hung Wang
  • Patent number: 10707879
    Abstract: A frequency-modulated continuous-wave radar system includes a waveform generator, a delta-sigma modulation circuit, a voltage controlled oscillator, a frequency divider circuit, a control circuit, an injection locked oscillator, a power amplifier circuit, a first power detection circuit, a second power detection circuit, a third power detection circuit, and a calibration engine circuit. The waveform generator, the delta-sigma modulation circuit, the voltage controlled oscillator, the frequency divider circuit, and the control circuit form a phase locked loop.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: July 7, 2020
    Assignee: KaiKuTek INC.
    Inventors: Mike Chun Hung Wang, Pang-Ning Chen, Chen-Lun Lin, Ying-Chia Chen, Wei-Jyun Wang
  • Patent number: 10536152
    Abstract: An oscillating circuit has an injection-locked oscillator (ILO) and a calibration circuit. The ILO has a Gm cell and an LC tank. A first node of the Gm cell receives a first injection signal, and a second node of the Gm cell receives a second injection signal. The first injection signal and the second injection signal are differential signals. The Gm cell provides a negative resistance between a first output end and a second output end of the Gm cell. When the calibration circuit tunes a resonant frequency of the LC tank of the ILO, the magnitude of the negative resistance is reduced to control the ILO to stop self-oscillating. After finishing tuning the resonant frequency of the LC tank, the calibration circuit controls the ILO to start self-oscillating by increasing the magnitude of the negative resistance.
    Type: Grant
    Filed: October 21, 2018
    Date of Patent: January 14, 2020
    Assignee: KaiKuTek INC.
    Inventors: Pang-Ning Chen, Chen-Lun Lin, Ying-Chia Chen, Wei-Jyun Wang, Mike Chun Hung Wang
  • Patent number: 10498294
    Abstract: A method for enhancing linearity of the receiver front-end system includes receiving a radio frequency signal by an antenna, converting the radio frequency signal to first differential signals by a transformer module, adjusting frequencies of the first differential signals to generate second differential signals by a mixer module, detecting a common signal in order to reduce a common error of the second differential signals, and generating third differential signals according to a reference signal after the common error is reduced from the second differential signals. The first differential signals, the second differential signals, and the third differential signals are unbalanced.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 3, 2019
    Assignee: KaiKuTek INC.
    Inventors: Pang-Ning Chen, Chen-Lun Lin, Ying-Chia Chen, Wei-Jyun Wang, Mike Chun Hung Wang
  • Publication number: 20190319630
    Abstract: A divider-less phase locked loop (PLL) includes a phase frequency detector (PFD), a charge pump (CP), a voltage controlled oscillator (VCO), a delay unit, and a clock gating unit. The PFD is electrically connected to the VCO through the CP, and the CP outputs a voltage control signal to the VCO. The VCO generates an output signal. The delay unit receives and delays a reference signal to generate a delay signal. The clock gating unit samples the output signal according to the delay signal. Since the clock gating unit samples the output signal according to the delay signal, the divider-less PLL does not need to include a divider to divide a frequency of the output signal. Therefore, power consumption of the divider-less PLL can be reduced.
    Type: Application
    Filed: October 3, 2018
    Publication date: October 17, 2019
    Inventors: Pang-Ning Chen, Chen-Lun Lin, Ying-Chia Chen, Wei-Jyun Wang, Mike Chun-Hung Wang
  • Publication number: 20190319589
    Abstract: A method for enhancing linearity of the receiver front-end system includes receiving a radio frequency signal by an antenna, converting the radio frequency signal to first differential signals by a transformer module, adjusting frequencies of the first differential signals to generate second differential signals by a mixer module, detecting a common signal in order to reduce a common error of the second differential signals, and generating third differential signals according to a reference signal after the common error is reduced from the second differential signals. The first differential signals, the second differential signals, and the third differential signals are unbalanced.
    Type: Application
    Filed: August 21, 2018
    Publication date: October 17, 2019
    Inventors: Pang-Ning Chen, Chen-Lun Lin, Ying-Chia Chen, Wei-Jyun Wang, Mike Chun Hung Wang
  • Publication number: 20190319596
    Abstract: A low voltage inverter-based amplifier includes a first inverter-based amplification module, a second inverter-based amplification module, an inverter-based feedforward module, and an inverter-based common mode detector. The first inverter-based amplification module receives an input signal. The second inverter-based amplification module receives the input signal through the inverter-based feedforward module, and receives a first output signal from the first inverter-based amplification module. The inverter-based common mode detector receives an amplified signal from the second inverter-based amplification module, and outputs a feedback signal to the second inverter-based amplification module. Since the first and the second inverter-based amplification modules are both inverter-based, the supply voltage of the low voltage inverter-based amplifier is provided to supply one PMOS and one NMOS for normal operation.
    Type: Application
    Filed: September 28, 2018
    Publication date: October 17, 2019
    Inventors: Pang-Ning CHEN, Chen-Lun LIN, Ying-Chia CHEN, Wei-Jyun WANG, Mike Chun-Hung WANG
  • Publication number: 20190317189
    Abstract: A frequency-modulated continuous-wave radar system includes a waveform generator, a delta-sigma modulation circuit, a voltage controlled oscillator, a frequency divider circuit, a control circuit, an injection locked oscillator, a power amplifier circuit, a first power detection circuit, a second power detection circuit, a third power detection circuit, and a calibration engine circuit. The waveform generator, the delta-sigma modulation circuit, the voltage controlled oscillator, the frequency divider circuit, and the control circuit form a phase locked loop.
    Type: Application
    Filed: July 9, 2018
    Publication date: October 17, 2019
    Inventors: Mike Chun Hung Wang, Pang-Ning Chen, Chen-Lun Lin, Ying-Chia Chen, Wei-Jyun Wang
  • Publication number: 20190319581
    Abstract: An oscillating circuit has an injection-locked oscillator (ILO) and a calibration circuit. The ILO has a Gm cell and an LC tank. A first node of the Gm cell receives a first injection signal, and a second node of the Gm cell receives a second injection signal. The first injection signal and the second injection signal are differential signals. The Gm cell provides a negative resistance between a first output end and a second output end of the Gm cell. When the calibration circuit tunes a resonant frequency of the LC tank of the ILO, the magnitude of the negative resistance is reduced to control the ILO to stop self-oscillating. After finishing tuning the resonant frequency of the LC tank, the calibration circuit controls the ILO to start self-oscillating by increasing the magnitude of the negative resistance.
    Type: Application
    Filed: October 21, 2018
    Publication date: October 17, 2019
    Inventors: Pang-Ning Chen, Chen-Lun Lin, Ying-Chia Chen, Wei-Jyun Wang, Mike Chun Hung Wang
  • Patent number: 10425086
    Abstract: A divider-less phase locked loop (PLL) includes a phase frequency detector (PFD), a charge pump (CP), a voltage controlled oscillator (VCO), a delay unit, and a clock gating unit. The PFD is electrically connected to the VCO through the CP, and the CP outputs a voltage control signal to the VCO. The VCO generates an output signal. The delay unit receives and delays a reference signal to generate a delay signal. The clock gating unit samples the output signal according to the delay signal. Since the clock gating unit samples the output signal according to the delay signal, the divider-less PLL does not need to include a divider to divide a frequency of the output signal. Therefore, power consumption of the divider-less PLL can be reduced.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: September 24, 2019
    Assignee: KaiKuTek Inc.
    Inventors: Pang-Ning Chen, Chen-Lun Lin, Ying-Chia Chen, Wei-Jyun Wang, Mike Chun-Hung Wang
  • Publication number: 20180128647
    Abstract: A measuring device is provided for determining the position of a susceptor in a reactor housing. The measuring device includes a central element, which can be fastened on the susceptor at a predefined location, and a plurality of sensing arms, which protrude from the central element beyond an outer periphery of the susceptor. The sensing arms respectively include a sensing section that can be brought in touching contact with a contact zone. The contact zone is formed by an inner periphery of the reactor housing or a component arranged in the reactor housing. Using the measuring device, the position of a susceptor of a CVD reactor is determined relative to the reactor housing or a component arranged in the reactor housing.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 10, 2018
    Inventors: Gi Youl Kim, Mark Chen-Lun Lin, Gregory Siu, Ki Chul Park, Jonathan David Mohn, H. William Luca, JR.