Patents by Inventor Chen-Yu Kao

Chen-Yu Kao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142749
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a first movable assembly and a first driving assembly. The first movable assembly is configured to connect a first optical element, and the first movable assembly is movable relative to the fixed assembly. The first driving assembly is configured to drive the first movable assembly to move relative to the fixed assembly in a first dimension.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Inventors: Chao-Chang HU, Chen-Hsien FAN, Chih-Wen CHIANG, Chien-Yu KAO
  • Publication number: 20240111125
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a first movable assembly and a first driving assembly. The first movable assembly is configured to connect a first optical element, and the first movable assembly is movable relative to the fixed assembly. The first driving assembly is configured to drive the first movable assembly to move relative to the fixed assembly in a first dimension.
    Type: Application
    Filed: October 5, 2023
    Publication date: April 4, 2024
    Inventors: Chao-Chang HU, Chen-Hsien FAN, Chih-Wen CHIANG, Chien-Yu KAO
  • Patent number: 11942363
    Abstract: A method includes etching a semiconductor substrate to form a trench, with the semiconductor substrate having a sidewall facing the trench, and depositing a first semiconductor layer extending into the trench. The first semiconductor layer includes a first bottom portion at a bottom of the trench, and a first sidewall portion on the sidewall of the semiconductor substrate. The first sidewall portion is removed to reveal the sidewall of the semiconductor substrate. The method further includes depositing a second semiconductor layer extending into the trench, with the second semiconductor layer having a second bottom portion over the first bottom portion, and a second sidewall portion contacting the sidewall of the semiconductor substrate. The second sidewall portion is removed to reveal the sidewall of the semiconductor substrate.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Yao Lin, Kuei-Yu Kao, Chen-Ping Chen, Chih-Han Lin
  • Publication number: 20240096705
    Abstract: A semiconductor device includes a plurality of channel layers vertically separated from one another. The semiconductor device also includes an active gate structure comprising a lower portion and an upper portion. The lower portion wraps around each of the plurality of channel layers. The semiconductor device further includes a gate spacer extending along a sidewall of the upper portion of the active gate structure. The gate spacer has a bottom surface. Moreover, a dummy gate dielectric layer is disposed between the gate spacer and a topmost channel layer of plurality of channel layers. The dummy gate dielectric layer is in contact with a top surface of the topmost channel layer, the bottom surface of the gate spacer, and the sidewall of the gate structure.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Yu Kao, Chen-Yui Yang, Hsien-Chung Huang, Chao-Cheng Chen, Shih-Yao Lin, Chih-Chung Chiu, Chih-Han Lin, Chen-Ping Chen, Ke-Chia Tseng, Ming-Ching Chang
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11923440
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes forming semiconductor fins on a substrate. A first dummy gate is formed over the semiconductor fins. A recess is formed in the first dummy gate, and the recess is disposed between the semiconductor fins. A dummy fin material is formed in the recess. A portion of the dummy fin material is removed to expose an upper surface of the first dummy gate and to form a dummy fin. A second dummy gate is formed on the exposed upper surface of the first dummy gate.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Yao Lin, Chen-Ping Chen, Kuei-Yu Kao, Hsiao Wen Lee, Chih-Han Lin
  • Patent number: 8486563
    Abstract: The present invention relates to a composite material for a negative electrode, including: a plurality of iron oxide particles; and a conductivity improver, which is selected form the group consisting of copper, cobalt, nickel, tin, antimony, bismuth, indium, silver, gold, lead, cadmium, carbon black, graphite, copper salt, cobalt salt, nickel salt, tin salt, antimony salt, bismuth salt, indium salt, silver salt, gold salt, lead salt, cadmium salt, copper hydroxide, cobalt hydroxide, nickel hydroxide, stannic hydroxide, antimony hydroxide, bismuth hydroxide, indium hydroxide, silver hydroxide, gold hydroxide, lead hydroxide, cadmium hydroxide and the combination thereof. In the case of applying the composite material for a negative electrode according to the present invention in an electrochemical device, the improved charge/discharge characteristics and high capacity can be achieved.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: July 16, 2013
    Assignee: National Tsing Hua University
    Inventors: Kan-Sen Chou, Chen-Yu Kao, Yun-Ru Tsai
  • Patent number: 8278140
    Abstract: A method for preparing IGZO particles and a method for preparing an IGZO thin film by using the IGZO particles are disclosed. The method for preparing the IGZO particles comprises the following steps: (A) providing a solution of metal acid salts, which contains a zinc salt, an indium salt, and a gallium salt; (B) mixing the solution of the metal acid salts with a basic solution to obtain an oxide precursor; and (C) heating the oxide precursor to obtain IGZO particles.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: October 2, 2012
    Assignee: National Tsing Hua University
    Inventors: Ya-Hui Yang, Sueli Sidney Yang, Chen-Yu Kao, Kan-San Chou, Sinn-Wen Chen
  • Publication number: 20110236747
    Abstract: The present invention relates to a composite material for a negative electrode, including: a plurality of iron oxide particles; and a conductivity improver, which is selected form the group consisting of copper, cobalt, nickel, tin, antimony, bismuth, indium, silver, gold, lead, cadmium, carbon black, graphite, copper salt, cobalt salt, nickel salt, tin salt, antimony salt, bismuth salt, indium salt, silver salt, gold salt, lead salt, cadmium salt, copper hydroxide, cobalt hydroxide, nickel hydroxide, stannic hydroxide, antimony hydroxide, bismuth hydroxide, indium hydroxide, silver hydroxide, gold hydroxide, lead hydroxide, cadmium hydroxide and the combination thereof. In the case of applying the composite material for a negative electrode according to the present invention in an electrochemical device, the improved charge/discharge characteristics and high capacity can be achieved.
    Type: Application
    Filed: October 22, 2010
    Publication date: September 29, 2011
    Inventors: Kan-Sen CHOU, Chen-Yu Kao, Yun-Ru Tsai
  • Publication number: 20110097842
    Abstract: A method for preparing IGZO particles and a method for preparing an IGZO thin film by using the IGZO particles are disclosed. The method for preparing the IGZO particles comprises the following steps: (A) providing a solution of metal acid salts, which contains a zinc salt, an indium salt, and a gallium salt; (B) mixing the solution of the metal acid salts with a basic solution to obtain an oxide precursor; and (C) heating the oxide precursor to obtain IGZO particles.
    Type: Application
    Filed: December 1, 2009
    Publication date: April 28, 2011
    Applicant: National Tsing Hua University
    Inventors: Ya-Hui Yang, Sueli Sidney Yang, Chen-Yu Kao, Kan-San Chou
  • Publication number: 20110020534
    Abstract: A manufacturing method of a battery electrode includes the following steps: providing a reducing reagent, a conductive adjuvant, and a solution comprising ferric ion, wherein the conductive adjuvant is selected from the group consisting of a metallic salt, a metal particle, a metal compound and a carbon conductive substance; applying the conductive adjuvant into the solution comprising ferric ion to form a first mixture solution, followed by mixing the first mixture solution with the reducing reagent to form a second mixture solution, wherein the conductive adjuvant and the ferric ion are reduced by the reducing reagent to form a composite micro-particle comprising iron micro-particle; isolating the composite micro-particle from the second mixture solution; providing an adhesive reagent and mixing with the composite micro-particle to form a coating reagent; and applying the coating reagent onto a metal mesh to produce the battery electrode.
    Type: Application
    Filed: October 22, 2009
    Publication date: January 27, 2011
    Inventors: Kan-Sen CHOU, Chen-Yu Kao
  • Publication number: 20080131369
    Abstract: Example compositions of liposomes with hydrophilic polymers on their surface, and containing relatively high concentrations of contrast-enhancing agents for computed tomography are provided. Example pharmaceutical compositions of such liposomes, when administered to a subject, provide for increased contrast of extended duration, as measured by computed tomography, in the bloodstream and other tissues of the subject. Also provided are example methods for making the liposomes containing high concentrations of contrast-enhancing agents, and example methods for using the compositions.
    Type: Application
    Filed: January 12, 2005
    Publication date: June 5, 2008
    Applicant: MARVEL THERAPEUTICS
    Inventors: Ananth Annapragada, Ravi V. Bellamkonda, Eric Hoffman, Chandra Vijayalakshmi, Chen-Yu Kao, Ketan Ghaghada
  • Patent number: RE45195
    Abstract: Example compositions of liposomes with hydrophilic polymers on their surface, and containing relatively high concentrations of contrast-enhancing agents for computed tomography are provided. Example pharmaceutical compositions of such liposomes, when administered to a subject, provide for increased contrast of extended duration, as measured by computed tomography, in the bloodstream and other tissues of the subject. Also provided are example methods for making the liposomes containing high concentrations of contrast-enhancing agents, and example methods for using the compositions.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: October 14, 2014
    Assignees: Marval Pharma, Inc., Case Western Reserve University, Cleveland State University
    Inventors: Ananth Annapragada, Ravi V. Bellamkonda, Eric Hoffman, Chandra Vijayalakshmi, Chen-Yu Kao