Patents by Inventor Chen-Yueh Li

Chen-Yueh Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8597968
    Abstract: An active device array substrate is provided. First, a substrate having a display area and a sensing area is provided. Then, a first patterned conductor layer is disposed on the display area of the substrate. A gate insulator is disposed on the substrate. A patterned semiconductor layer, a second patterned conductor layer and a patterned photosensitive dielectric layer are disposed on the gate insulator, wherein the second patterned conductor layer includes a source electrode, a drain electrode and a lower electrode, the patterned photosensitive dielectric layer covering the second patterned conductor layer includes an interface protection layer disposed on the source electrode and the drain electrode and a photo-sensing layer disposed on the lower electrode. A passivation layer is then disposed on the substrate. After that, a third patterned conductor layer including a pixel electrode and an upper electrode is disposed on the passivation layer.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: December 3, 2013
    Assignee: Au Optronics Corporation
    Inventors: Yu-Cheng Chen, Chen-Yueh Li, Ching-Sang Chuang, Ching-Chieh Shih, An-Thung Cho
  • Publication number: 20120280332
    Abstract: A method for fabricating a pixel structure is provided. A patterned semiconductor layer including a lower electrode, a doped source region, a doped drain region and a channel region is formed on a substrate. A gate dielectric layer is formed on the patterned semiconductor layer. A patterned first metal layer including a gate electrode, a scan line and a common electrode is formed on the gate dielectric layer, wherein the channel region is disposed below the gate electrode. A first dielectric layer and a first passivation layer are sequentially formed on the patterned first metal layer. A patterned second metal layer including a source, a drain and a data line is formed on the first passivation layer, wherein the data line is disposed above the common electrode, and the first dielectric layer and the first passivation layer are disposed between the data line and the common electrode.
    Type: Application
    Filed: July 27, 2011
    Publication date: November 8, 2012
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Jhen-Yu You, Chen-Yueh Li, Ming-Yan Chen
  • Patent number: 8198149
    Abstract: A method for fabricating an active device array substrate is provided. A first patterned semiconductor layer, a gate insulator, a first patterned conductive layer and a first dielectric layer is sequentially formed on a substrate. First contact holes exposing the first patterned semiconductor layer are formed in the first dielectric layer and the gate insulator. A second patterned conductive layer and a second patterned semiconductor layer disposed thereon are simultaneously formed on the first dielectric layer. The second conductive layer includes contact conductors and a bottom electrode. The second patterned semiconductor layer includes an active layer. A second dielectric layer having second contact holes is formed on the first dielectric layer, wherein a portion of the second contact holes exposes the active layer. A third patterned conductive layer electrically connected to the active layer through a portion of the second contact holes is formed on the second dielectric layer.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: June 12, 2012
    Assignee: Au Optronics Corporation
    Inventors: Ming-Wei Sun, Chen-Yueh Li, Yu-Cheng Chen, Chia-Tien Peng
  • Publication number: 20120112214
    Abstract: An active device array substrate is provided. First, a substrate having a display area and a sensing area is provided. Then, a first patterned conductor layer is disposed on the display area of the substrate. A gate insulator is disposed on the substrate. A patterned semiconductor layer, a second patterned conductor layer and a patterned photosensitive dielectric layer are disposed on the gate insulator, wherein the second patterned conductor layer includes a source electrode, a drain electrode and a lower electrode, the patterned photosensitive dielectric layer covering the second patterned conductor layer includes an interface protection layer disposed on the source electrode and the drain electrode and a photo-sensing layer disposed on the lower electrode. A passivation layer is then disposed on the substrate. After that, a third patterned conductor layer including a pixel electrode and an upper electrode is disposed on the passivation layer.
    Type: Application
    Filed: January 19, 2012
    Publication date: May 10, 2012
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Yu-Cheng Chen, Chen-Yueh Li, Ching-Sang Chuang, Ching-Chieh Shih, An-Thung Cho
  • Publication number: 20120115288
    Abstract: A method for fabricating an active device array substrate is provided. A first patterned semiconductor layer, a gate insulator, a first patterned conductive layer and a first dielectric layer is sequentially formed on a substrate. First contact holes exposing the first patterned semiconductor layer are formed in the first dielectric layer and the gate insulator. A second patterned conductive layer and a second patterned semiconductor layer disposed thereon are simultaneously formed on the first dielectric layer. The second conductive layer includes contact conductors and a bottom electrode. The second patterned semiconductor layer includes an active layer. A second dielectric layer having second contact holes is formed on the first dielectric layer, wherein a portion of the second contact holes exposes the active layer. A third patterned conductive layer electrically connected to the active layer through a portion of the second contact holes is formed on the second dielectric layer.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 10, 2012
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Ming-Wei Sun, Chen-Yueh Li, Yu-Cheng Chen, Chia-Tien Peng
  • Patent number: 8148185
    Abstract: A method for fabricating an active device array substrate is provided. First, a substrate having a display area and a sensing area is provided. Then, a first patterned conductor layer is formed on the display area of the substrate. A gate insulator is formed on the substrate. A patterned semiconductor layer, a second patterned conductor layer and a patterned photosensitive dielectric layer are formed on the gate insulator, wherein the second patterned conductor layer includes a source electrode, a drain electrode and a lower electrode, the patterned photosensitive dielectric layer covering the second patterned conductor layer includes an interface protection layer disposed on the source electrode and the drain electrode and a photo-sensing layer disposed on the lower electrode. A passivation layer is then formed on the substrate. After that, a third patterned conductor layer including a pixel electrode and an upper electrode is formed on the passivation layer.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: April 3, 2012
    Assignee: Au Optronics Corporation
    Inventors: Yu-Cheng Chen, Chen-Yueh Li, Ching-Sang Chuang, Ching-Chieh Shih, An-Thung Cho
  • Patent number: 8143117
    Abstract: A method for fabricating an active device array substrate is provided. A first patterned semiconductor layer, a gate insulator, a first patterned conductive layer and a first dielectric layer is sequentially formed on a substrate. First contact holes exposing the first patterned semiconductor layer are formed in the first dielectric layer and the gate insulator. A second patterned conductive layer and a second patterned semiconductor layer disposed thereon are simultaneously formed on the first dielectric layer. The second conductive layer includes contact conductors and a bottom electrode. The second patterned semiconductor layer includes an active layer. A second dielectric layer having second contact holes is formed on the first dielectric layer, wherein a portion of the second contact holes exposes the active layer. A third patterned conductive layer electrically connected to the active layer through a portion of the second contact holes is formed on the second dielectric layer.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: March 27, 2012
    Assignee: Au Optronics Corporation
    Inventors: Ming-Wei Sun, Chen-Yueh Li, Yu-Cheng Chen, Chia-Tien Peng
  • Patent number: 7973317
    Abstract: A method for fabricating an array substrate for a liquid crystal display (LCD) is provided. A semiconductor layer and a transparent lower electrode formed on a substrate is provided and covered by a first dielectric layer serving as a gate dielectric layer and a capacitor dielectric layer. A gate electrode and an upper electrode comprising a transparent electrode portion and a metal electrode portion are formed on the first dielectric layer and covered by a second dielectric layer. A source/drain electrode, a planarization layer, and a pixel electrode are sequentially formed on the second dielectric layer, in which the source/drain electrode is electrically connected to the semiconductor layer through the first and second dielectric layers and the pixel electrode is electrically connected to the source/drain electrode through the planarization layer. An array substrate for an LCD is also disclosed.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: July 5, 2011
    Assignee: Au Optronics Corp.
    Inventors: Yu-Cheng Chen, Chen-Yueh Li
  • Publication number: 20100267177
    Abstract: A method for fabricating an active device array substrate is provided. First, a substrate having a display area and a sensing area is provided. Then, a first patterned conductor layer is formed on the display area of the substrate. A gate insulator is formed on the substrate. A patterned semiconductor layer, a second patterned conductor layer and a patterned photosensitive dielectric layer are formed on the gate insulator, wherein the second patterned conductor layer includes a source electrode, a drain electrode and a lower electrode, the patterned photosensitive dielectric layer covering the second patterned conductor layer includes an interface protection layer disposed on the source electrode and the drain electrode and a photo-sensing layer disposed on the lower electrode. A passivation layer is then formed on the substrate. After that, a third patterned conductor layer including a pixel electrode and an upper electrode is formed on the passivation layer.
    Type: Application
    Filed: September 15, 2009
    Publication date: October 21, 2010
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Yu-Cheng Chen, Chen-Yueh Li, Ching-Sang Chuang, Ching-Chieh Shih, An-Thung Cho
  • Publication number: 20100230763
    Abstract: A method for fabricating an active device array substrate is provided. A first patterned semiconductor layer, a gate insulator, a first patterned conductive layer and a first dielectric layer is sequentially formed on a substrate. First contact holes exposing the first patterned semiconductor layer are formed in the first dielectric layer and the gate insulator. A second patterned conductive layer and a second patterned semiconductor layer disposed thereon are simultaneously formed on the first dielectric layer. The second conductive layer includes contact conductors and a bottom electrode. The second patterned semiconductor layer includes an active layer. A second dielectric layer having second contact holes is formed on the first dielectric layer, wherein a portion of the second contact holes exposes the active layer. A third patterned conductive layer electrically connected to the active layer through a portion of the second contact holes is formed on the second dielectric layer.
    Type: Application
    Filed: August 12, 2009
    Publication date: September 16, 2010
    Applicant: Au Optronics Corporation
    Inventors: Ming-Wei Sun, Chen-Yueh Li, Yu-Cheng Chen, Chia-Tien Peng
  • Patent number: 7781272
    Abstract: A method for manufacturing the pixel structure of a liquid crystal display is provided. In comparison to using seven masks in the conventional lithographic processes for the pixel structure, only four masks are required in the manufacturing method of the present invention. Therefore, the cost of manufacturing is reduced. Furthermore, the unnecessary multilayer structures on the display area can be removed in the manufacturing processes, and thus, enhance the transmittance thereof.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: August 24, 2010
    Assignee: Au Optronics Corp.
    Inventor: Chen-Yueh Li
  • Publication number: 20100187536
    Abstract: A method for fabricating an array substrate for a liquid crystal display (LCD) is provided. A semiconductor layer and a transparent lower electrode formed on a substrate is provided and covered by a first dielectric layer serving as a gate dielectric layer and a capacitor dielectric layer. A gate electrode and an upper electrode comprising a transparent electrode portion and a metal electrode portion are formed on the first dielectric layer and covered by a second dielectric layer. A source/drain electrode, a planarization layer, and a pixel electrode are sequentially formed on the second dielectric layer, in which the source/drain electrode is electrically connected to the semiconductor layer through the first and second dielectric layers and the pixel electrode is electrically connected to the source/drain electrode through the planarization layer. An array substrate for an LCD is also disclosed.
    Type: Application
    Filed: April 1, 2010
    Publication date: July 29, 2010
    Applicant: AU OPTRONICS CORP.
    Inventors: Yu-Cheng Chen, Chen-Yueh Li
  • Patent number: 7745243
    Abstract: A forming method of the present invention includes forming a first patterned conductive layer, which includes a transparent conductive layer and a metal layer stacked together on a substrate, where the first patterned conductive layer functions as gate lines, gate electrodes, common lines and predetermined transparent pixel electrode structures; and forming a second patterned conductive layer on the substrate. The second patterned conductive layer includes data lines and reflective pixel electrodes, and be directly connected to doping regions, such as source regions/drain regions. According to the forming method of the present invention, pixel structures of a transflective liquid crystal display device can be formed through five mask processes. Therefore, the manufacturing process of the transflective liquid crystal display device is effectively simplified, so the product yield is improved and the cost can be reduced.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: June 29, 2010
    Assignee: AU Optronics Corp.
    Inventors: Yu-Cheng Chen, Chen-Yueh Li, Ching-Sang Chuang, Kun-Chih Lin
  • Patent number: 7727789
    Abstract: A method for fabricating an array substrate for a liquid crystal display (LCD) is provided. A semiconductor layer and a transparent lower electrode formed on a substrate is provided and covered by a first dielectric layer serving as a gate dielectric layer and a capacitor dielectric layer. A gate electrode and an upper electrode comprising a transparent electrode portion and a metal electrode portion are formed on the first dielectric layer and covered by a second dielectric layer. A source/drain electrode, a planarization layer, and a pixel electrode are sequentially formed on the second dielectric layer, in which the source/drain electrode is electrically connected to the semiconductor layer through the first and second dielectric layers and the pixel electrode is electrically connected to the source/drain electrode through the planarization layer. An array substrate for an LCD is also disclosed.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: June 1, 2010
    Assignee: Au Optronics Corp.
    Inventors: Yu-Cheng Chen, Chen-Yueh Li
  • Publication number: 20100112737
    Abstract: A forming method of the present invention includes forming a first patterned conductive layer, which includes a transparent conductive layer and a metal layer stacked together on a substrate, where the first patterned conductive layer functions as gate lines, gate electrodes, common lines and predetermined transparent pixel electrode structures; and forming a second patterned conductive layer on the substrate. The second patterned conductive layer includes data lines and reflective pixel electrodes, and be directly connected to doping regions, such as source regions/drain regions. According to the forming method of the present invention, pixel structures of a transflective liquid crystal display device can be formed through five mask processes. Therefore, the manufacturing process of the transflective liquid crystal display device is effectively simplified, so the product yield is improved and the cost can be reduced.
    Type: Application
    Filed: April 2, 2009
    Publication date: May 6, 2010
    Inventors: Yu-Cheng Chen, Chen-Yueh Li, Ching-Sang Chuang, Kun-Chih Lin
  • Patent number: 7674658
    Abstract: A semiconductor device and a manufacturing method thereof are provided. The manufacturing method can form a structure of a thin film transistor (TFT) having a symmetric lightly doped region, and thus provide superior operation reliability and electrical performance. In addition, the manufacturing method forms gate patterns of different TFTs by the same mask process and thereby avoids the misalignment of masks so as to improve the processing yield and reduce the manufacturing cost.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: March 9, 2010
    Assignee: Au Optronics Corporation
    Inventors: Chen-Yueh Li, Yi-Wei Chen, Ming-Yan Chen
  • Publication number: 20090085037
    Abstract: A method for fabricating an array substrate for a liquid crystal display (LCD) is provided. A semiconductor layer and a transparent lower electrode formed on a substrate is provided and covered by a first dielectric layer serving as a gate dielectric layer and a capacitor dielectric layer. A gate electrode and an upper electrode comprising a transparent electrode portion and a metal electrode portion are formed on the first dielectric layer and covered by a second dielectric layer. A source/drain electrode, a planarization layer, and a pixel electrode are sequentially formed on the second dielectric layer, in which the source/drain electrode is electrically connected to the semiconductor layer through the first and second dielectric layers and the pixel electrode is electrically connected to the source/drain electrode through the planarization layer. An array substrate for an LCD is also disclosed.
    Type: Application
    Filed: May 29, 2008
    Publication date: April 2, 2009
    Applicant: AU OPTRONICS CORP.
    Inventors: Yu-Cheng Chen, Chen-Yueh Li
  • Publication number: 20090061571
    Abstract: A method for manufacturing the pixel structure of a liquid crystal display is provided. In comparison to using seven masks in the conventional lithographic processes for the pixel structure, only four masks are required in the manufacturing method of the present invention. Therefore, the cost of manufacturing is reduced. Furthermore, the unnecessary multilayer structures on the display area can be removed in the manufacturing processes, and thus, enhance the transmittance thereof.
    Type: Application
    Filed: April 18, 2008
    Publication date: March 5, 2009
    Applicant: AU OPTRONICS CORP.
    Inventor: Chen-Yueh Li
  • Publication number: 20080283923
    Abstract: A semiconductor device and a manufacturing method thereof are provided. The manufacturing method can form a structure of a thin film transistor (TFT) having a symmetric lightly doped region, and thus provide superior operation reliability and electrical performance. In addition, the manufacturing method forms gate patterns of different TFTs by the same mask process and thereby avoids the misalignment of masks so as to improve the processing yield and reduce the manufacturing cost.
    Type: Application
    Filed: February 4, 2008
    Publication date: November 20, 2008
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Chen-Yueh Li, Yi-Wei Chen, Ming-Yan Chen