Patents by Inventor Cheng-Chan Wang

Cheng-Chan Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11924995
    Abstract: A water cooling head with sparse and dense fins, including a main body, a first fin set and a second fin set. Wherein a chamber is formed inside the main body, the main body has a first plate and a second plate, the main body forms an inlet channel and an outlet channel, so that the cooling water passes through the chamber. The first fin set and the second fin set are arranged in the chamber, and the first fin set and the second fin set are connected to the first plate respectively. The first fin set comprises several first fins spaced apart, the first fins divide the chamber to form several first channels. The second fin set comprises several second fins spaced apart, the second fins divide the chamber to form several second channels. The water cooling head can increase the overall heat sinking efficiency.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: March 5, 2024
    Inventors: Chi-Chuan Wang, Cheng-Chen Cheng, Chuan-Chan Huang, Jen-Chieh Huang
  • Publication number: 20240053610
    Abstract: A near-eye display device, including a substrate, a light-emitting element, an active element, an optical layer, and a light guide structure, is provided. The light-emitting element is located on the substrate and includes a first type semiconductor pattern. The active element is located adjacent to the light-emitting element. A channel layer of the active element and the first type semiconductor pattern of the light-emitting element belong to the same layer. The optical layer covers the light-emitting element and the active element. The light guide structure is located on the optical layer and includes an in-coupling portion and an out-coupling portion, wherein an orthogonal projection of the in-coupling portion on the substrate is overlapped with an orthogonal projection of the light-emitting element on the substrate. A manufacturing method of the near-eye display device is also provided.
    Type: Application
    Filed: May 10, 2023
    Publication date: February 15, 2024
    Applicant: AUO Corporation
    Inventors: Wei-Syun Wang, Hsin-Hung Li, Chih-Chiang Chen, Yu-Cheng Shih, Chia-Hsin Chung, Cheng-Chan Wang, Ming-Jui Wang, Han-Sheng Nian
  • Publication number: 20240019620
    Abstract: A display device includes a first image generating unit and a first waveguide glass. The first image generating unit is configured to emit first light. The first waveguide glass faces toward the first image generating unit. The first waveguide glass includes a first microstructure, two second microstructures and a third microstructure. The first microstructure is located between two ends at the same side of the two second microstructures. The third microstructure is located between the two second microstructures. The third microstructure has a first grating and a second grating. An extending direction of the first grating is different from an extending direction of the second grating. The second microstructure is configured to receive the first light of the first image generating unit transmitted through the first microstructure and transmit the first light to the third microstructure.
    Type: Application
    Filed: November 30, 2022
    Publication date: January 18, 2024
    Inventors: Han-Sheng NIAN, Ming-Jui WANG, Chih-Chiang CHEN, Chia-Hsin CHUNG, Yu-Cheng SHIH, Wei-Syun WANG, Cheng-Chan WANG, Hsin-Hung LI, Sheng-Ming HUANG
  • Publication number: 20240012241
    Abstract: A head-up display includes an image generating unit and a waveguide glass. The waveguide glass faces toward the image generating unit. The waveguide glass includes a first microstructure, a second microstructure and a third microstructure. The first microstructure has a first width. The second microstructure is adjacent to the first microstructure. The third microstructure is adjacent to the second microstructure. The third microstructure has tiling areas adjacent to each other. A gap between the two adjacent tiling areas is less than half of the first width.
    Type: Application
    Filed: November 29, 2022
    Publication date: January 11, 2024
    Inventors: Han-Sheng NIAN, Seok-Lyul LEE, Ming-Jui WANG, Chih-Chiang CHEN, Chia-Hsin CHUNG, Yu-Cheng SHIH, Cheng-Chan WANG, Hsin-Hung LI, Wei-Syun WANG, Sheng-Ming HUANG
  • Publication number: 20220375989
    Abstract: A light-emitting device, including a first type semiconductor layer, a patterned insulating layer, a light-emitting layer, and a second type semiconductor layer, is provided. The patterned insulating layer covers the first type semiconductor layer and has a plurality of insulating openings. The insulating openings are separated from each other. The light-emitting layer is located in the plurality of insulating openings and covers a portion of the first type semiconductor layer. The second type semiconductor layer is located on the light-emitting layer.
    Type: Application
    Filed: September 9, 2021
    Publication date: November 24, 2022
    Applicant: Au Optronics Corporation
    Inventors: Hsin-Hung Li, Wei-Syun Wang, Chih-Chiang Chen, Yu-Cheng Shih, Cheng-Chan Wang, Chia-Hsin Chung, Ming-Jui Wang, Sheng-Ming Huang
  • Patent number: 11442210
    Abstract: A polarizer substrate includes a substrate, a reflective layer, and a metal pattern layer. The reflective layer is located on the substrate and has a transmission area and a reflective area. The metal pattern layer is located on the reflective layer and the substrate. The metal pattern layer includes a polarizer structure and a microstructure. The polarizer structure includes a plurality of grid lines overlapping the transmission area. A thickness of each of the grid lines is 200 nm to 500 nm, a width of each of the grid lines is 30 nm to 70 nm, and a distance between each adjacent two of the grid lines is 30 nm to 70 nm. The microstructure overlaps the reflective area, and a thickness of the microstructure is 20 nm to 500 nm.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: September 13, 2022
    Assignee: Au Optronics Corporation
    Inventors: Sheng-Kai Lin, Chia-Hsin Chung, Tsai-Sheng Lo, Sheng-Ming Huang, Ming-Jui Wang, Chih-Chiang Chen, Hui-Ku Chang, Cheng-Chan Wang, Chia-Po Lin, Jen-Kuei Lu
  • Patent number: 11392003
    Abstract: An active device substrate including a substrate, first metal grid wires, a first transparent conductive layer, a gate insulating layer, a semiconductor layer, a source, and a drain is provided. The first metal grid wires are located on the substrate. The first transparent conductive layer includes a scan line and a gate connected to the scan line. The scan line and/or the gate is directly connected to at least a part of the first metal grid wires. The gate insulating layer is located on the first transparent conductive layer. The semiconductor layer is located on the gate insulating layer and overlapped with the gate. The source and the drain are electrically connected to the semiconductor layer.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: July 19, 2022
    Assignee: Au Optronics Corporation
    Inventors: Cheng-Chan Wang, Tsai-Sheng Lo, Chia-Hsin Chung, Chih-Chiang Chen, Hui-Ku Chang, Sheng-Kai Lin, Chia-Po Lin, Ming-Jui Wang, Sheng-Ming Huang, Jen-Kuei Lu
  • Publication number: 20210255379
    Abstract: A polarizer substrate includes a substrate, a reflective layer, and a metal pattern layer. The reflective layer is located on the substrate and has a transmission area and a reflective area. The metal pattern layer is located on the reflective layer and the substrate. The metal pattern layer includes a polarizer structure and a microstructure. The polarizer structure includes a plurality of grid lines overlapping the transmission area. A thickness of each of the grid lines is 200 nm to 500 nm, a width of each of the grid lines is 30 nm to 70 nm, and a distance between each adjacent two of the grid lines is 30 nm to 70 nm. The microstructure overlaps the reflective area, and a thickness of the microstructure is 20 nm to 500 nm.
    Type: Application
    Filed: July 20, 2020
    Publication date: August 19, 2021
    Applicant: Au Optronics Corporation
    Inventors: Sheng-Kai Lin, Chia-Hsin Chung, Tsai-Sheng Lo, Sheng-Ming Huang, Ming-Jui Wang, Chih-Chiang Chen, Hui-Ku Chang, Cheng-Chan Wang, Chia-Po Lin, Jen-Kuei Lu
  • Publication number: 20210248341
    Abstract: A photosensitive device includes a display panel, a photosensitive element substrate, and a first quarter wave plate. The photosensitive element substrate is located on the back of the display panel. The photosensitive element substrate includes a first substrate, a plurality of first light emitting diodes, a plurality of photosensitive elements, and a first polarizer structure. The first light emitting diodes and the photosensitive elements are located on the first substrate. The first polarizer structure is located on the first light emitting diodes and the photosensitive elements. The first quarter wave plate is located between the first polarizer structure and the display panel.
    Type: Application
    Filed: July 21, 2020
    Publication date: August 12, 2021
    Applicant: Au Optronics Corporation
    Inventors: Chia-Po Lin, Tsai-Sheng Lo, Chih-Chiang Chen, Sheng-Ming Huang, Sheng-Kai Lin, Ming-Jui Wang, Chia-Hsin Chung, Hui-Ku Chang, Cheng-Chan Wang, Jen-Kuei Lu
  • Publication number: 20210247652
    Abstract: An active device substrate including a substrate, first metal grid wires, a first transparent conductive layer, a gate insulating layer, a semiconductor layer, a source, and a drain is provided. The first metal grid wires are located on the substrate. The first transparent conductive layer includes a scan line and a gate connected to the scan line. The scan line and/or the gate is directly connected to at least a part of the first metal grid wires. The gate insulating layer is located on the first transparent conductive layer. The semiconductor layer is located on the gate insulating layer and overlapped with the gate. The source and the drain are electrically connected to the semiconductor layer.
    Type: Application
    Filed: July 24, 2020
    Publication date: August 12, 2021
    Applicant: Au Optronics Corporation
    Inventors: Cheng-Chan Wang, Tsai-Sheng Lo, Chia-Hsin Chung, Chih-Chiang Chen, Hui-Ku Chang, Sheng-Kai Lin, Chia-Po Lin, Ming-Jui Wang, Sheng-Ming Huang, Jen-Kuei Lu