Patents by Inventor Cheng-Chih Kung

Cheng-Chih Kung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10330864
    Abstract: An optical device includes a waveguide on a base and a taper on the base. The waveguide and the taper are optically aligned such that the taper and the waveguide exchange light signals during operation of the device. The taper is configured to guide the light signals through a taper material and the waveguide is configured to guide the light signals through a waveguide medium. The taper material and the waveguide medium are different materials and/or have different indices of refraction.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: June 25, 2019
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventors: Mehdi Asghari, Wei Qian, Pegah Seddighian, Bradley Jonathan Luff, Dazeng Feng, Joan Fong, Cheng-Chih Kung, Monish Sharma
  • Patent number: 10031355
    Abstract: The optical device includes a waveguide positioned on a base and a modulator positioned on the base. The modulator includes a ridge of an electro-absorption medium having a top side and a lateral side. The lateral side is between the top side and the base and the top side has a width. The waveguide is configured to guide a light signal through the modulator such that the light signal is guided through the ridge of electro-absorption medium. A heater is positioned over the lateral side of the electro-absorption medium without being positioned over the entire width of the ridge.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 24, 2018
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventors: Dazeng Feng, Cheng-Chih Kung, Jacob Levy, Wei Qian, Wei Liu, Mehdi Asghari
  • Publication number: 20180172909
    Abstract: An optical device includes a waveguide on a base and a taper on the base. The waveguide and the taper are optically aligned such that the taper and the waveguide exchange light signals during operation of the device. The taper is configured to guide the light signals through a taper material and the waveguide is configured to guide the light signals through a waveguide medium. The taper material and the waveguide medium are different materials and/or have different indices of refraction.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 21, 2018
    Inventors: Mehdi Asghari, Wei Qian, Pegah Seddighian, Bradley Jonathan Luff, Dazeng Feng, Joan Fong, Cheng-Chih Kung, Monish Sharma
  • Publication number: 20180067344
    Abstract: The optical device includes a waveguide positioned on a base and a modulator positioned on the base. The modulator includes a ridge of an electro-absorption medium having a top side and a lateral side. The lateral side is between the top side and the base and the top side has a width. The waveguide is configured to guide a light signal through the modulator such that the light signal is guided through the ridge of electro-absorption medium. A heater is positioned over the lateral side of the electro-absorption medium without being positioned over the entire width of the ridge.
    Type: Application
    Filed: August 29, 2017
    Publication date: March 8, 2018
    Inventors: Dazeng Feng, Cheng-Chih Kung, Jacob Levy, Wei Qian, Wei Liu, Mehdi Asghari
  • Patent number: 9778494
    Abstract: The optical device includes a waveguide positioned on a base and a modulator positioned on the base. The modulator includes a ridge of an electro-absorption medium having a top side and a lateral side. The lateral side is between the top side and the base and the top side has a width. The waveguide is configured to guide a light signal through the modulator such that the light signal is guided through the ridge of electro-absorption medium. A heater is positioned over the lateral side of the electro-absorption medium without being positioned over the entire width of the ridge.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: October 3, 2017
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventors: Dazeng Feng, Cheng-Chih Kung, Jacob Levy, Wei Qian, Wei Liu, Mehdi Asghari
  • Publication number: 20170269391
    Abstract: The optical device includes a waveguide positioned on a base and a modulator positioned on the base. The modulator includes a ridge of an electro-absorption medium having a top side and a lateral side. The lateral side is between the top side and the base and the top side has a width. The waveguide is configured to guide a light signal through the modulator such that the light signal is guided through the ridge of electro-absorption medium. A heater is positioned over the lateral side of the electro-absorption medium without being positioned over the entire width of the ridge.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 21, 2017
    Inventors: Dazeng Feng, Cheng-Chih Kung, Jacob Levy, Wei Qian, Wei Liu, Mehdi Asghari
  • Patent number: 9594213
    Abstract: A method of forming an optical device includes using a photomask to form a first mask on a device precursor. The method also includes using the photomask to form a second mask on the device precursor. The second mask is formed after the first mask. In some instances, the optical device includes a waveguide positioned on a base. The waveguide is configured to guide a light signal through a ridge. A heater is positioned on the ridge such that the ridge is between the heater and the base.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: March 14, 2017
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventors: Wei Qian, Dazeng Feng, Cheng-Chih Kung, Jay Jie Lai
  • Publication number: 20160282557
    Abstract: A method of forming an optical device includes using a photomask to form a first mask on a device precursor. The method also includes using the photomask to form a second mask on the device precursor. The second mask is formed after the first mask. In some instances, the optical device includes a waveguide positioned on a base. The waveguide is configured to guide a light signal through a ridge. A heater is positioned on the ridge such that the ridge is between the heater and the base.
    Type: Application
    Filed: March 27, 2015
    Publication date: September 29, 2016
    Inventors: Wei Qian, Dazeng Feng, Cheng-Chih Kung, Jay Jie Lai
  • Patent number: 8842946
    Abstract: The light sensor is included on an optical device having a waveguide on a base. The waveguide is configured to guide a light signal through a crystalline light-transmitting medium. The light sensor is also positioned on the base and is configured to receive the light signal from the waveguide. The light sensor includes a planar interface between two different materials. The interface is at a 45° angle relative to a <110> direction of the light-transmitting medium.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: September 23, 2014
    Assignee: Kotura, Inc.
    Inventors: Shirong Liao, Cheng-Chih Kung, Dazeng Feng, Ning-Ning Feng, Yong Liu, Roshanak Shafiiha
  • Patent number: 8817354
    Abstract: An optical device includes a ridge on a base. The ridge includes an active medium. An active component on the base is a light sensor and/or a light modulator. The active component is configured to guide a light signal through the active medium included in the ridge. Electrical current carriers contact the lateral sides of the ridge on opposing sides of the ridge. Each of the electrical current carriers includes a carrier material that is doped so as to increase the electrical conductivity of the carrier material. The carrier material is different from the active medium.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: August 26, 2014
    Assignee: Kotura, Inc.
    Inventors: Dazeng Feng, Mehdi Asghari, Cheng-Chih Kung
  • Patent number: 8542954
    Abstract: An optical device includes an active component on a base. The active component is a light sensor and/or a light modulator. The active component is configured to guide a light signal through a ridge of an active medium extending upwards from slab regions of the active medium. The slab regions are on opposing sides of the ridge. The active medium includes a doped region that extends into a lateral side of the ridge and also into one of the slab regions. The depth that the doped region extends into the slab region is further than the depth that the doped region extends into the ridge.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 24, 2013
    Assignee: Kotura, Inc.
    Inventors: Cheng-Chih Kung, Shirong Liao
  • Publication number: 20130195397
    Abstract: An optical device includes an active component on a base. The active component is a light sensor and/or a light modulator. The active component is configured to guide a light signal through a ridge of an active medium extending upwards from slab regions of the active medium. The slab regions are on opposing sides of the ridge. The active medium includes a doped region that extends into a lateral side of the ridge and also into one of the slab regions. The depth that the doped region extends into the slab region is further than the depth that the doped region extends into the ridge.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 1, 2013
    Inventors: Cheng-Chih Kung, Shirong Liao
  • Publication number: 20130182305
    Abstract: An optical device includes a ridge on a base. The ridge includes an active medium. An active component on the base is a light sensor and/or a light modulator. The active component is configured to guide a light signal through the active medium included in the ridge. Electrical current carriers contact the lateral sides of the ridge on opposing sides of the ridge. Each of the electrical current carriers includes a carrier material that is doped so as to increase the electrical conductivity of the carrier material. The carrier material is different from the active medium.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 18, 2013
    Inventors: Dazeng Feng, Mehdi Asghari, Cheng-Chih Kung
  • Patent number: 8300999
    Abstract: An optical device includes a light-transmitting medium on a base. The light-transmitting medium at least partially defines a free propagation region through which light signals travel. A reflective grating is positioned such that light signals can travel through the free propagation region and be received by the optical grating. The optical grating is configured to reflect the received light signal back into the free propagation region. The optical grating reflects the light signals such that light signals associated with different wavelengths separate as the light signals travel through the free propagation region. The portion of the light-transmitting medium that defines the free propagation region has a facet through with the light signals are transmitted. The grating includes a buffer layer between the facet and a reflecting layer that is configured to reflect the light signals received by the grating.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: October 30, 2012
    Assignee: Kotura, Inc.
    Inventors: Wei Qian, Dazeng Feng, Cheng-Chih Kung, Joan Fong, Mehdi Asghari
  • Patent number: 8093080
    Abstract: The device includes an optical waveguide on a base. The waveguide is configured to guide a light signal through a light-transmitting medium. A light sensor is also positioned on the base. The light sensor including a ridge extending from slab regions. The slab regions are positioned on opposing sides of the ridge. A light-absorbing medium is positioned to receive at least a portion of the light signal from the light-transmitting medium included in the waveguide. The light-absorbing medium is included in the ridge and also in the slab regions. The light-absorbing medium includes doped regions positioned such that an application of a reverse bias across the doped regions forms an electrical field in the light-absorbing medium included in the ridge.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: January 10, 2012
    Assignee: Kotusa, Inc.
    Inventors: Shirong Liao, Dawei Zheng, Cheng-Chih Kung, Mehdi Asghari
  • Publication number: 20110150392
    Abstract: An optical device includes a light-transmitting medium on a base. The light-transmitting medium at least partially defines a free propagation region through which light signals travel. A reflective grating is positioned such that light signals can travel through the free propagation region and be received by the optical grating. The optical grating is configured to reflect the received light signal back into the free propagation region. The optical grating reflects the light signals such that light signals associated with different wavelengths separate as the light signals travel through the free propagation region. The portion of the light-transmitting medium that defines the free propagation region has a facet through with the light signals are transmitted. The grating includes a buffer layer between the facet and a reflecting layer that is configured to reflect the light signals received by the grating.
    Type: Application
    Filed: November 12, 2010
    Publication date: June 23, 2011
    Inventors: Wei Qian, Dazeng Feng, Cheng-Chih Kung, Joan Fong, Mehdi Asghari
  • Publication number: 20110068425
    Abstract: The device includes an optical waveguide on a base. The waveguide is configured to guide a light signal through a light-transmitting medium. A light sensor is also positioned on the base. The light sensor including a ridge extending from slab regions. The slab regions are positioned on opposing sides of the ridge. A light-absorbing medium is positioned to receive at least a portion of the light signal from the light-transmitting medium included in the waveguide. The light-absorbing medium is included in the ridge and also in the slab regions. The light-absorbing medium includes doped regions positioned such that an application of a reverse bias across the doped regions forms an electrical field in the light-absorbing medium included in the ridge.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 24, 2011
    Inventors: Shirong Liao, Dawei Zheng, Cheng-Chih Kung, Mehdi Asghari
  • Patent number: 6885795
    Abstract: An optical component is disclosed. The optical component includes a tap waveguide and a primary waveguide positioned on a base. The tap waveguide is configured to receive a portion of a light signal traveling along the primary waveguide. The portion of the light signal received by the tap waveguide is the tapped portion of the light signal. A direction changing region is configured to receive the tapped portion of the light signal from the tap waveguide and to direct the tapped portion of the light signal travels away from the base. A light sensor is configured to receive the tapped portion of the light signal from the direction changing region.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: April 26, 2005
    Assignee: Kotusa, Inc.
    Inventors: Shih-Hsiang Hsu, Dazeng Feng, Cheng-Chih Kung, Xiaoming Yin, Trenton Gary Coroy
  • Patent number: 6417548
    Abstract: A mask ROM stores information by selecting the work function of the gates of each FET in an array of FETs. The polysilicon gates of some of the FETs are doped N-type and the gates of the other FETs are doped P-type to form gates having different work functions, thereby forming FETs having different threshold voltages. The ROM consists of a parallel array of buried N+ bit lines formed in the substrate, a gate oxide layer deposited over the bit lines and a layer of polysilicon deposited on the gate oxide. The polysilicon is blanket doped P-type and then an encoding mask is formed, with openings in the encoding mask exposing regions of the polysilicon to be formed into gates of FETs with low threshold voltages. Either arsenic or phosphorus is doped into the polysilicon through the mask openings. The mask is removed, a layer of conductive material such as tungsten silicide is deposited and the polysilicon and the conductive material are formed into word lines for the ROM.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: July 9, 2002
    Assignee: United Microelectronics Corp.
    Inventors: Shing-Ren Sheu, Cheng-Chih Kung
  • Patent number: 6248178
    Abstract: A method is disclosed for removing pad nodules. The method provides a wafer comprising pads and pad nodules which are formed on said pads, wherein said pads are made from a metal selected from the group consisting of aluminum and an aluminum-copper alloy. Then, the method dips the wafer into deionized water for removing the pad nodules. Thereafter, the method spin-dries the wafer and coats an alkaloid developer on the wafer for further removing the pad nodules. Finally, the method removes the alkaloid developer from the wafer and bakes the wafer.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: June 19, 2001
    Assignee: United Microelectronics Corp.
    Inventors: Cheng-Tzung Tsai, Cheng-Chih Kung, Lien-Sheng Chung, Tai-Yuan Li