Patents by Inventor Cheng Frank Zhong

Cheng Frank Zhong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200096450
    Abstract: Embodiments of the invention provide an improved biosensor for biological or chemical analysis. According to embodiments of the invention, backside illumination (BSI) complementary metal-oxide-semiconductor (CMOS) image sensors can be used to effectively analyze and measure fluorescence or chemiluminescence of a sample. This measured value can be used to help identify a sample. Embodiments of the invention also provide methods of manufacturing an improved biosensor for biological or chemical analysis and systems and methods of DNA sequencing.
    Type: Application
    Filed: March 19, 2018
    Publication date: March 26, 2020
    Inventors: Cheng Frank Zhong, Shifeng Li
  • Publication number: 20200048705
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined through at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Patent number: 10472675
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined through at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: November 12, 2019
    Assignee: ILLUMINA, INC.
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Publication number: 20190292590
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 26, 2019
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Publication number: 20190204225
    Abstract: Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. A passivation layer extends over the device base and forms an array of reaction recesses above the light guides. The biosensor also includes peripheral crosstalk shields that at least partially surround corresponding light guides of the guide array to reduce optical crosstalk between adjacent light sensors.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Inventors: Cheng Frank Zhong, Hod Finkelstein, Boyan Boyanov, Dietrich Dehlinger, Darren Segale
  • Publication number: 20190170904
    Abstract: A device for luminescent imaging includes an array of imaging pixels, a photonic structure over the array of imaging pixels, and an array of features over the photonic structure. A first feature of the array of features is over a first pixel of the array of imaging pixels, and a second feature of the array of features is over the first pixel and spatially displaced from the first feature. A first luminophore is within or over the first feature, and a second luminophore is within or over the second feature. The device includes a radiation source to generate first photons having a first characteristic at a first time, and generate second photons having a second characteristic at a second time. The first pixel selectively receives luminescence emitted by the first and second luminophores responsive to the first photons at the first time and second photons at the second time, respectively.
    Type: Application
    Filed: April 21, 2017
    Publication date: June 6, 2019
    Inventors: Juraj TOPOLANCIK, Cheng Frank ZHONG
  • Patent number: 10280457
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: May 7, 2019
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Patent number: 10254225
    Abstract: Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. The biosensor also includes a shield layer having apertures that are positioned relative to the input regions of corresponding light guides such that the light emissions propagate through the apertures into the corresponding input regions. The shield layer extends between adjacent apertures and is configured to block the excitation light and the light emissions incident on the shield layer between the adjacent apertures.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: April 9, 2019
    Assignee: ILLUMINA, INC.
    Inventors: Cheng Frank Zhong, Hod Finkelstein, Boyan Boyanov, Dietrich Dehlinger, Darren Segale
  • Publication number: 20190088463
    Abstract: A method for forming sequencing flow cells can include providing a semiconductor wafer covered with a dielectric layer, and forming a patterned layer on the dielectric layer. The patterned layer has a differential surface that includes alternating first surface regions and second surface regions. The method can also include attaching a cover wafer to the semiconductor wafer to form a composite wafer structure including a plurality of flow cells. The composite wafer structure can then be singulated to form a plurality of dies. Each die forms a sequencing flow cell. The sequencing flow cell can include a flow channel between a portion of the patterned layer and a portion of the cover wafer, an inlet, and an outlet. Further, the method can include functionalizing the sequencing flow cell to create differential surfaces.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 21, 2019
    Applicant: Complete Genomics, Inc.
    Inventors: Shifeng Li, Jian Gong, Yan-You Lin, Cheng Frank Zhong
  • Publication number: 20190070606
    Abstract: A microfluidic device includes a substrate, a sensor, and one or more lamination films. The top surface of the substrate can include first recessed grooves forming first open channels and the bottom surface of the plastic substrate can include a first recessed cavity and second recessed groves forming second open channels. A first lamination film can be adhered with the top surface of the plastic substrate to form first closed channels. A second lamination film can be adhered to the bottom surface of the plastic substrate to form second closed channels. The sensor can be on the bottom surface of the substrate such that it overlies the first recessed cavity to form a flow cell with the sensor top surface inward facing. A first closed channel can be fluidically connected with a second closed channel and a first or second closed channel can be fluidically connected with the flow cell.
    Type: Application
    Filed: August 31, 2018
    Publication date: March 7, 2019
    Inventors: Chen Li, Cheng Frank Zhong, Yu Liu, Yiwen Ouyang
  • Publication number: 20190024163
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined through at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 24, 2019
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Patent number: 10059992
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined though at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice. The device further can include a second material having a second refractive index that is different than the first refractive index.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: August 28, 2018
    Assignee: ILLUMINA, INC.
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Publication number: 20180155782
    Abstract: Embodiments of the invention provide an improved biosensor for biological or chemical analysis. According to embodiments of the invention, backside illumination (BSI) complementary metal-oxide-semiconductor (CMOS) image sensors can be used to effectively analyze and measure fluorescence or chemiluminescence of a sample. This measured value can be used to help identify a sample. Embodiments of the invention also provide methods of manufacturing an improved biosensor for biological or chemical analysis and systems and methods of DNA sequencing.
    Type: Application
    Filed: November 3, 2017
    Publication date: June 7, 2018
    Applicant: Complete Genomics, Inc.
    Inventor: Cheng Frank Zhong
  • Publication number: 20170362652
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Application
    Filed: June 21, 2017
    Publication date: December 21, 2017
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Publication number: 20170275690
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined though at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice. The device further can include a second material having a second refractive index that is different than the first refractive index.
    Type: Application
    Filed: March 23, 2017
    Publication date: September 28, 2017
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Patent number: 9719138
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: August 1, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Publication number: 20160356715
    Abstract: Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. The biosensor also includes a shield layer having apertures that are positioned relative to the input regions of corresponding light guides such that the light emissions propagate through the apertures into the corresponding input regions. The shield layer extends between adjacent apertures and is configured to block the excitation light and the light emissions incident on the shield layer between the adjacent apertures.
    Type: Application
    Filed: December 9, 2014
    Publication date: December 8, 2016
    Applicant: Illumina, Inc.
    Inventors: Cheng Frank Zhong, Hod Finkelstein, Boyan Boyanov, Dietrich Dehlinger, Darren Segale
  • Publication number: 20160153040
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Application
    Filed: November 23, 2015
    Publication date: June 2, 2016
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Patent number: 9222123
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: December 29, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foguet, Jonas Korlach, Hovig Bayandorian
  • Publication number: 20150293021
    Abstract: An integrated detection, flow cell and photonics (DFP) device is provided that comprises a substrate having an array of pixel elements that sense photons during active periods. The substrate and pixel elements form an IC photon detection layer. At least one wave guide is formed on the IC photo detection layer as a photonics layer. An optical isolation layer is formed over at least a portion of the wave guide. A collection of photo resist (PR) walls patterned to define at least one flow cell channel that is configured to direct fluid along a fluid flow path. The wave guides align to extend along the fluid flow path. The flow cell channel is configured to receive samples at sample sites that align with the array of pixel elements.
    Type: Application
    Filed: March 8, 2013
    Publication date: October 15, 2015
    Applicant: ILLUMINA, INC.
    Inventors: Hod Finkelstein, Cheng Frank Zhong, Eliane H. Trepagnier