Patents by Inventor Cheng-Hsien Chu

Cheng-Hsien Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11990258
    Abstract: An over-current protection device includes first and second electrode layers and a PTC material layer laminated therebetween. The PTC material layer includes a polymer matrix, a conductive filler, and a titanium-containing dielectric filler. The polymer matrix has a fluoropolymer. The titanium-containing dielectric filler has a compound represented by a general formula of MTiO3, wherein the M represents transition metal or alkaline earth metal. The total volume of the PTC material layer is calculated as 100%, and the titanium-containing dielectric filler accounts to for 5-15% by volume of the PTC material layer.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: May 21, 2024
    Assignee: POLYTRONICS TECHNOLOGY CORP.
    Inventors: Hsiu-Che Yen, Yung-Hsien Chang, Cheng-Yu Tung, Chen-Nan Liu, Chia-Yuan Lee, Yu-Chieh Fu, Yao-Te Chang, Fu-Hua Chu
  • Publication number: 20240145132
    Abstract: An over-current protection device includes first and second electrode layers and a PTC material layer laminated therebetween. The PTC material layer includes a polymer matrix, and a conductive filler. The polymer matrix has a fluoropolymer. The total volume of the PTC material layer is calculated as 100%, and the fluoropolymer accounts for 47-62% by volume of the PTC material layer. The fluoropolymer has a melt viscosity higher than 3000 Pa·s.
    Type: Application
    Filed: March 16, 2023
    Publication date: May 2, 2024
    Inventors: CHENG-YU TUNG, CHEN-NAN LIU, Chia-Yuan Lee, HSIU-CHE YEN, YUNG-HSIEN CHANG, Yao-Te Chang, FU-HUA CHU
  • Publication number: 20240145133
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a polymer matrix and a first conductive filler. The polymer matrix includes a polyolefin-based polymer and a fluoropolymer. The fluoropolymer has a melt flow index higher than 1.9 g/10 min, and the polyolefin-based polymer and the fluoropolymer together form an interpenetrating polymer network (IPN). The first conductive filler has a metal-ceramic compound dispersed in the polymer matrix.
    Type: Application
    Filed: April 5, 2023
    Publication date: May 2, 2024
    Inventors: CHEN-NAN LIU, YUNG-HSIEN CHANG, CHENG-YU TUNG, HSIU-CHE YEN, Chia-Yuan LEE, Yao-Te CHANG, FU-HUA CHU
  • Publication number: 20240127988
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a first polymer and a conductive filler. The first polymer consists of polyvinylidene difluoride (PVDF), and PVDF exists in different phases such as ?-PVDF, ?-PVDF and ?-PVDF. The total amount of ?-PVDF, ?-PVDF and ?-PVDF is calculated as 100%, and the amount of ?-PVDF accounts for 48% to 55%. The conductive filler has a metal-ceramic compound.
    Type: Application
    Filed: March 2, 2023
    Publication date: April 18, 2024
    Inventors: HSIU-CHE YEN, YUNG-HSIEN CHANG, CHENG-YU TUNG, Chia-Yuan Lee, CHEN-NAN LIU, Yao-Te Chang, FU-HUA CHU
  • Publication number: 20240127989
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a first polymer and a conductive filler. The first polymer consists of polyvinylidene difluoride (PVDF), and PVDF exists in different phases such as ?-PVDF, ?-PVDF and ?-PVDF. The total amount of ?-PVDF, ?-PVDF and ?-PVDF is calculated as 100%, and the amount of ?-PVDF accounts for 33% to 42%.
    Type: Application
    Filed: January 25, 2023
    Publication date: April 18, 2024
    Inventors: CHIA-YUAN LEE, CHENG-YU TUNG, HSIU-CHE YEN, CHEN-NAN LIU, YUNG-HSIEN CHANG, YAO-TE CHANG, FU-HUA CHU
  • Patent number: 4176164
    Abstract: Aqueous glyoxylic acid solution is used to absorb sulfur dioxide and sulfur trioxide from a gaseous stream and the absorbed sulfur dioxide being removed from the aqueous glyoxylic acid solution by stripping and the absorbed sulfur trioxide being thereafter removed from the stripped glyoxylic acid solution. In a preferred embodiment, the absorbed sulfur trioxide is removed from the stripped glyoxylic acid solution by precipitation as barium sulfate. Particularly, sulfuric acid or absorbed sulfur trioxide in aqueous glyoxylic acid solutions may be removed by contacting the aqueous glyoxylic acid solutions with a barium compound such as barium hydroxide which is substantially inert to the glyoxylic acid but which precipitates barium sulfate from the aqueous glyoxylic acid solution.
    Type: Grant
    Filed: July 26, 1977
    Date of Patent: November 27, 1979
    Assignee: Spring Chemicals Limited
    Inventors: William H. Stark, Cheng-Hsien Chu
  • Patent number: 4115517
    Abstract: Sulfuric acid or absorbed sulfur trioxide in aqueous glyoxylic acid solutions may be removed by contacting the aqueous glyoxylic acid solutions with a barium compound such as barium hydroxide which is substantially inert to the glyoxylic acid but which precipitates barium sulfate from the aqueous glyoxylic acid solution. In a preferred embodiment, aqueous glyoxylic acid solution is used to absorb sulfur dioxide and sulfur trioxide from industrial flue gases and the absorbed sulfur dioxide being removed from the aqueous glyoxylic acid solution by stripping and the absorbed sulfur trioxide being removed from the stripped glyoxylic acid solution by precipitation as barium sulfate.
    Type: Grant
    Filed: August 24, 1976
    Date of Patent: September 19, 1978
    Assignee: Spring Chemicals Limited
    Inventors: William H. Stark, Cheng-Hsien Chu