Patents by Inventor Cheng-Ju Wu

Cheng-Ju Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200035628
    Abstract: Methods of fabricating semiconductor devices are provided. The method includes providing a substrate and forming an interconnect structure on the substrate. The interconnect structure includes a top metal layer. The method also includes forming a first barrier film on the top metal layer using a first deposition process with a first level of power, and forming a second barrier film on the first barrier film using a second deposition process with a second level of power that is lower than the first level of power. The method further includes forming an aluminum-containing layer on the second barrier film. In addition, the method includes patterning the first barrier film, the second barrier film and the aluminum-containing layer to form a conductive pad structure.
    Type: Application
    Filed: July 5, 2019
    Publication date: January 30, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Hsun HUANG, Po-Han WANG, Ing-Ju LEE, Chao-Lung CHEN, Cheng-Ming WU
  • Publication number: 20200004089
    Abstract: A display device includes a plurality of transparent voltage-dividing common electrodes and a plurality of pixel units. The transparent voltage-dividing common electrodes are electrically isolated from each other in a first direction. Each of the pixel units includes a first pixel electrode, a second pixel electrode, and a voltage-dividing switch. The first pixel electrode is configured to receive a data voltage. The second pixel electrode is configured to receive the data voltage. The voltage-dividing switch is configured to divide the data voltage on the second pixel electrode to one of the transparent voltage-dividing common electrodes.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Inventors: SHENG-JU HO, CHENG-HAN TSAO, SHANG-JIE WU, YI-JUNG CHEN, HUNG-CHE LIN, SHUN-LING HOU, NAI-WEN CHANG
  • Patent number: 10522974
    Abstract: An edge-emitting laser having a small vertical emitting angle includes an upper cladding layer, a lower cladding layer and an active region layer sandwiched between the upper and lower cladding layers. By embedding a passive waveguide layer within the lower cladding to layer, an extended lower cladding layer is formed between the passive waveguide layer and the active region layer. In addition, the refractive index (referred as n-value) of the passive waveguide layer is larger than the n-value of the extended lower cladding layer. The passive waveguide layer with a larger n-value would guide the light field to extend downward. The extended lower cladding layer can separate the passive waveguide layer and the active region layer and thus expand the near-field distribution of laser light field in the resonant cavity, so as to obtain a smaller vertical emitting angle in the far-field laser light field.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: December 31, 2019
    Assignee: TrueLight Corporation
    Inventors: Chien Hung Pan, Cheng-Ju Wu
  • Publication number: 20190340330
    Abstract: An integrated circuit (IC) manufacturing method includes receiving an IC design layout having IC regions separate from each other. Each of the IC regions includes an initial IC pattern that is substantially identical among the IC regions. The method further includes identifying a group of IC regions from the IC regions. All IC regions in the group have a substantially same location effect, which is introduced by global locations of the IC regions on the IC design layout. The method further includes performing a correction process to a first IC region in the group, modifying the initial IC pattern in the first IC region into a first corrected IC pattern. The correction process includes using a computer program to correct location effect. The method further includes replacing the initial IC pattern in a second IC region in the group with the first corrected IC pattern.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 7, 2019
    Inventors: Hung-Chun Wang, Ching-Hsu Chang, Chun-Hung Wu, Cheng Kun Tsai, Feng-Ju Chang, Feng-Lung Lin, Ming-Hsuan WU, Ping-Chieh Wu, Ru-Gun Liu, Wen-Chun Huang, Wen-Hao Liu
  • Patent number: 10360339
    Abstract: Provided is an integrated circuit (IC) manufacturing method. The method includes receiving an IC design layout, wherein the IC design layout includes multiple IC regions and each of the IC regions includes an initial IC pattern. The method further includes performing a correction process to a first IC region, thereby modifying the initial IC pattern in the first IC region to result in a first corrected IC pattern in the first IC region, wherein the correction process includes location effect correction. The method further includes replacing the initial IC pattern in a second IC region with the first corrected IC pattern.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: July 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Chun Wang, Ching-Hsu Chang, Chun-Hung Wu, Cheng Kun Tsai, Feng-Ju Chang, Feng-Lung Lin, Ming-Hsuan Wu, Ping-Chieh Wu, Ru-Gun Liu, Wen-Chun Huang, Wen-Hao Liu
  • Publication number: 20180366908
    Abstract: An edge-emitting laser having a small vertical emitting angle includes an upper cladding layer, a lower cladding layer and an active region layer sandwiched between the upper and lower cladding layers. By embedding a passive waveguide layer within the lower cladding to layer, an extended lower cladding layer is formed between the passive waveguide layer and the active region layer. In addition, the refractive index (referred as n-value) of the passive waveguide layer is larger than the n-value of the extended lower cladding layer. The passive waveguide layer with a larger n-value would guide the light field to extend downward. The extended lower cladding layer can separate the passive waveguide layer and the active region layer and thus expand the near-field distribution of laser light field in the resonant cavity, so as to obtain a smaller vertical emitting angle in the far-field laser light field.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 20, 2018
    Applicant: TRUELIGHT CORPORATION
    Inventors: Chien Hung Pan, Cheng-Ju Wu
  • Patent number: 10014663
    Abstract: An edge-emitting laser having a small vertical emitting angle includes an upper cladding layer, a lower cladding layer and an active region layer sandwiched between the upper and lower cladding layers. By embedding a passive waveguide layer within the lower cladding layer, an extended lower cladding layer is formed between the passive waveguide layer and the active region layer. In addition, the refractive index (referred as n-value) of the passive waveguide layer is larger than the n-value of the extended lower cladding layer. The passive waveguide layer with a larger n-value would guide the light field to extend downward. The extended lower cladding layer can separate the passive waveguide layer and the active region layer and thus expand the near-field distribution of laser light field in the resonant cavity, so as to obtain a smaller vertical emitting angle in the far-field laser light field.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: July 3, 2018
    Assignee: TrueLight Corporation
    Inventors: Chien Hung Pan, Cheng-Ju Wu
  • Patent number: 9165746
    Abstract: An electron beam drift detection device and a method for detecting electron beam drift are provided in which the method includes placing a predetermined characteristic identification pattern on a surface of a workpiece; emitting an electron beam, and focusing and deflecting the electron beam such that the focused and deflected electron beam scans the surface of the workpiece and the characteristic identification pattern; detecting backscattered electrons and secondary electrons; and receiving detection signals and performing an image process on the detection signals to obtain an electronic image of the characteristic identification pattern, and measuring a drift degree by comparing the electronic image with the predetermined shape of the characteristic identification pattern.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 20, 2015
    Assignee: National Taiwan University
    Inventors: Jia-Yush Yen, Yung-Yaw Chen, Yi-Hung Kuo, Cheng-Ju Wu
  • Patent number: 8786073
    Abstract: A packaging device for matrix-arrayed semiconductor light-emitting elements of high power and high directivity comprises a metal base, an array chip and a plurality of metal wires. The metal base is of highly heat conductive copper or aluminum, and a first electrode area and at least one second electrode area which are electrically isolated are disposed on the metal base. The array chip is disposed on the first electrode area, on which multiple matrix-arranged semiconductor light-emitting elements and at least one wire bond pad adjacent to the light-emitting elements are disposed. The light-emitting element is a VCSEL element, an HCSEL element or an RCLED element. The metal wires are connected between the wire bond pad and the second electrode area to transmit power signals. Between the bottom surface and the first electrode area is disposed a conductive adhesive to bond and facilitate electrical connection between the two.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: July 22, 2014
    Assignee: TrueLight Corporation
    Inventors: Cheng Ju Wu, Hung-Che Chen, I Han Wu, Shang-Cheng Liu, Jin Shan Pan
  • Patent number: 8786074
    Abstract: A packaging device for matrix-arrayed semiconductor light-emitting elements of high power and high directivity comprises a metal base, an array chip and a plurality of metal wires. The metal base is of highly heat conductive copper or aluminum, and a first electrode area and at least one second electrode area which are electrically isolated are disposed on the metal base. The array chip is disposed on the first electrode area, on which multiple matrix-arranged semiconductor light-emitting elements and at least one wire bond pad adjacent to the light-emitting elements are disposed. The light-emitting element is a VCSEL element, an HCSEL element or an RCLED element. The metal wires are connected between the wire bond pad and the second electrode area to transmit power signals. Between the bottom surface and the first electrode area is disposed a conductive adhesive to bond and facilitate electrical connection between the two.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: July 22, 2014
    Assignee: TrueLight Corporation
    Inventors: Cheng Ju Wu, Hung-Che Chen, I Han Wu, Shang-Cheng Liu, Jin Shan Pan
  • Patent number: 8679873
    Abstract: The present invention discloses a method for fabricating a heat-resistant, humidity-resistant oxide-confined vertical-cavity surface-emitting laser (VCSEL) by slowing down the oxidizing rate during a VCSEL oxidation process to thereby reduce stress concentration of an oxidation layer and by preventing moisture invasion using a passivation layer disposed on a laser window. The VCSEL device thus fabricated is heat-resistant, humidity-resistant, and highly reliable. In a preferred embodiment, the oxidation process takes place at an oxidizing rate of less than 0.4 ?m/min, and the passivation layer is a SiON passivation layer.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: March 25, 2014
    Assignee: TrueLight Corp.
    Inventors: Jin Shan Pan, Cheng Ju Wu, I Han Wu, Kuo Fong Tseng
  • Patent number: 8530358
    Abstract: The present invention discloses a manufacturing method of vertical cavity surface emitting laser. The method includes following steps: providing a substrate; forming an epitaxial layer stack including an aluminum-rich layer; forming an ion-doping mask including a ring-shaped opening; doping ions in the epitaxial layer stack through the ring-shaped opening and forming a ring-shaped ion-doped region over the aluminum-rich layer; forming an etching mask on the ion-doping mask for covering the ring-shaped opening of the ion-doping mask; etching the epitaxial layer stack through the etching mask and ion-doping mask for forming an island platform; oxidizing the aluminum-rich layer for forming a ring-shaped oxidized region. In addition, the present invention also discloses a vertical cavity surface emitting laser manufactured by the above mentioned method.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: September 10, 2013
    Assignee: True Light Corporation
    Inventors: Po-Han Chen, Cheng-Ju Wu, Jin-Shan Pan
  • Patent number: 8436581
    Abstract: A system for testing electromagnetic characteristics of an electromagnetic steel sheet includes: a driving unit operable based on a non-sinusoidal wave control signal from a control unit and a floating voltage to output a control output; a power output unit operable based on the control output from the driving unit to output a voltage output at an output side coupled across a first winding wound around the electromagnetic steel sheet such that an exciting current flowing through the first winding is generated in response to the voltage output, thereby resulting in an induced voltage across a second winding wound around the electromagnetic steel sheet; and a measuring unit outputting to the control unit an output corresponding to the exciting current and the induced voltage measured thereby such that the control unit obtains the electromagnetic characteristics of the electromagnetic steel sheet based on the output.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: May 7, 2013
    Assignee: China Steel Corporation
    Inventors: Kai-Chen Kuo, Jia-Yush Yen, Ping-Kun Lee, Yi-Chih Lai, Cheng-Ju Wu
  • Publication number: 20130064263
    Abstract: The present invention discloses a manufacturing method of vertical cavity surface emitting laser. The method includes following steps: providing a substrate; forming an epitaxial layer stack including an aluminum-rich layer; forming an ion-doping mask including a ring-shaped opening; doping ions in the epitaxial layer stack through the ring-shaped opening and forming a ring-shaped ion-doped region over the aluminum-rich layer; forming an etching mask on the ion-doping mask for covering the ring-shaped opening of the ion-doping mask; etching the epitaxial layer stack through the etching mask and ion-doping mask for forming an island platform; oxidizing the aluminum-rich layer for forming a ring-shaped oxidized region. In addition, the present invention also discloses a vertical cavity surface emitting laser manufactured by the above mentioned method.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Inventors: Po-Han CHEN, Cheng-Ju WU, Jin-Shan PAN
  • Patent number: 8324722
    Abstract: A packaging device for matrix-arrayed semiconductor light-emitting elements of high power and high directivity comprises a metal base, an array chip and a plurality of metal wires. The metal base is of highly heat conductive copper or aluminum, and a first electrode area and at least one second electrode area which are electrically isolated are disposed on the metal base. The array chip is disposed on the first electrode area, on which multiple matrix-arranged semiconductor light-emitting elements and at least one wire bond pad adjacent to the light-emitting elements are disposed. The light-emitting element is a VCSEL element, an HCSEL element or an RCLED element. The metal wires are connected between the wire bond pad and the second electrode area to transmit power signals. Between the bottom surface and the first electrode area is disposed a conductive adhesive to bond and facilitate electrical connection between the two.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: December 4, 2012
    Assignee: Truelight Corporation
    Inventors: Cheng Ju Wu, Hung-Che Chen, I Han Wu, Shang-Cheng Liu, Jin Shan Pan
  • Publication number: 20120256084
    Abstract: An electron beam drift detection device and a method for detecting electron beam drift are provided in which the method includes placing a predetermined characteristic identification pattern on a surface of a workpiece; emitting an electron beam, and focusing and deflecting the electron beam such that the focused and deflected electron beam scans the surface of the workpiece and the characteristic identification pattern; detecting backscattered electrons and secondary electrons; and detection signals; and receives the receiving detection signals and performs performing an image process on the detection signals to obtain an electronic image of the characteristic identification pattern, and measuring a drift degree by comparing the electronic image with the predetermined shape of the characteristic identification pattern.
    Type: Application
    Filed: September 23, 2011
    Publication date: October 11, 2012
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jia-Yush Yen, Yung-Yaw Chen, Yi-Hung Kuo, Cheng-Ju Wu
  • Patent number: 8121167
    Abstract: A dual wavelength laser device including a cap, a header, a first laser chip and a second laser chip. The cap includes a cap body and a lens embedded on the cap body. The header forms an accommodating space with the cap. The first laser chip is arranged in the accommodating space and emitting a first laser beam toward the lens. The second laser chip is arranged in the accommodating space and emitting a second laser beam toward the lens.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: February 21, 2012
    Assignee: Truelight Corporation
    Inventors: Jin-Shan Pan, Shang-Cheng Liu, Cheng-Ju Wu, Chang-Cherng Wu
  • Publication number: 20110121323
    Abstract: A packaging device for matrix-arrayed semiconductor light-emitting elements of high power and high directivity comprises a metal base, an array chip and a plurality of metal wires. The metal base is of highly heat conductive copper or aluminum, and a first electrode area and at least one second electrode area which are electrically isolated are disposed on the metal base. The array chip is disposed on the first electrode area, on which multiple matrix-arranged semiconductor light-emitting elements and at least one wire bond pad adjacent to the light-emitting elements are disposed. The light-emitting element is a VCSEL element, an HCSEL element or an RCLED element. The metal wires are connected between the wire bond pad and the second electrode area to transmit power signals. Between the bottom surface and the first electrode area is disposed a conductive adhesive to bond and facilitate electrical connection between the two.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 26, 2011
    Inventors: Cheng Ju Wu, Hung-Che Chen, I Han Wu, Shang-Cheng Liu, Jin Shan Pan
  • Publication number: 20110086449
    Abstract: The present invention discloses a method for fabricating a heat-resistant, humidity-resistant oxide-confined vertical-cavity surface-emitting laser (VCSEL) by slowing down the oxidizing rate during a VCSEL oxidation process to thereby reduce stress concentration of an oxidation layer and by preventing moisture invasion using a passivation layer disposed on a laser window. The VCSEL device thus fabricated is heat-resistant, humidity-resistant, and highly reliable. In a preferred embodiment, the oxidation process takes place at an oxidizing rate of less than 0.4 ?m/min, and the passivation layer is a SiON passivation layer.
    Type: Application
    Filed: December 11, 2009
    Publication date: April 14, 2011
    Inventors: Jin Shan Pan, Cheng Ju Wu, I Han Wu, Kuo Fong Tseng
  • Publication number: 20100283569
    Abstract: An electromagnetic winding assembly includes first and second housing halves and first and second conductive units provided on the first and second housing halves, respectively. The first and second housing halves are detachably connected to each other so as to define cooperatively a core-receiving space therebetween and to connect electrically the first conductive unit with the second conductive unit such that the first conductive unit cooperates with the second conductive unit to form at least one coil-like electrical conductor configured to be wound around a core received in the core-receiving space.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 11, 2010
    Inventors: Ping-Kun LEE, Jia-Yush YEN, Kai-Chen KUO, Yi-Chih LAI, Cheng-Ju WU