Patents by Inventor Cheng-Yen Huang
Cheng-Yen Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230073400Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.Type: ApplicationFiled: November 14, 2022Publication date: March 9, 2023Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
-
Publication number: 20230071568Abstract: This invention discloses a display panel including a first substrate, light emitting elements, a touch sensing structure and a conductive layer. The light emitting elements are disposed on the first substrate. The touch sensing structure is disposed on the first substrate and on a side away from a light emitting surface of the light emitting elements. The conductive layer is disposed between the light emitting elements and the first substrate and includes contacts or at least a portion of the touch sensing structure, and the light emitting elements and the contacts are electrically connected.Type: ApplicationFiled: August 15, 2022Publication date: March 9, 2023Applicant: HANNSTAR DISPLAY CORPORATIONInventors: Jing-Xuan Chen, Cheng-Yen Yeh, Mu-Kai Kang, Sz-Kai Huang, Ming-Chang Yu
-
Publication number: 20230063438Abstract: A method for making a semiconductor structure, including: forming a conductive layer; forming a patterned mask layer on the conductive layer; patterning the conductive layer to form a recess and a conductive feature; forming a first dielectric layer over the patterned mask layer and filling the recess with the first dielectric layer; patterning the first dielectric layer to form an opening; selectively forming a blocking layer in the opening; forming an etch stop layer to cover the first dielectric layer and exposing the blocking layer; forming on the etch stop layer a second dielectric layer; forming a second dielectric layer on the etch stop layer; patterning the second dielectric layer to form a through hole and exposing the conductive feature; and filling the through hole with an electrically conductive material to form an interconnect electrically connected to the conductive feature.Type: ApplicationFiled: August 30, 2021Publication date: March 2, 2023Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shao-Kuan LEE, Cheng-Chin LEE, Cherng-Shiaw TSAI, Ting-Ya LO, Chi-Lin TENG, Hsin-Yen HUANG, Hsiao-Kang CHANG, Shau-Lin SHUE
-
Publication number: 20230061501Abstract: An interconnect structure is provided. The structure includes a dielectric layer, a first conductive feature disposed in the dielectric layer, a capping layer having a first portion, a second portion opposing the first portion, and a third portion connecting the first portion and the second portion, wherein the third portion is in contact with the dielectric layer. The structure also includes a support layer in contact with the first and second portions of the capping layer, a first conductive layer disposed over the first conductive feature, a second conductive layer disposed over the dielectric layer, and a two-dimensional (2D) material layer in contact with a top surface of the first conductive layer, wherein the support layer, the first portion, the second portion, and the third portion define an air gap, and the air gap is disposed between the first conductive layer and the second conductive layer.Type: ApplicationFiled: August 27, 2021Publication date: March 2, 2023Inventors: Ting-Ya LO, Cheng-Chin LEE, Shao-Kuan LEE, Chi-Lin TENG, Hsin-Yen HUANG, Hsiaokang CHANG, Shau-Lin SHUE
-
Publication number: 20230068892Abstract: Some embodiments of the present disclosure relate to an integrated chip, including a semiconductor substrate and a dielectric layer disposed over the semiconductor substrate. A pair of metal lines are disposed over the dielectric layer and laterally spaced apart from one another by a cavity. A barrier layer structure extends along nearest neighboring sidewalls of the pair of metal lines such that the cavity is defined by inner sidewalls of the barrier layer structure and a top surface of the dielectric layer.Type: ApplicationFiled: August 26, 2021Publication date: March 2, 2023Inventors: Hsin-Yen Huang, Ting-Ya Lo, Shao-Kuan Lee, Chi-Lin Teng, Cheng-Chin Lee, Shau-Lin Shue, Hsiao-Kang Chang
-
Publication number: 20230064448Abstract: A semiconductor structure includes a substrate with a conductive structure thereon, a first dielectric layer, a conductive feature and a second dielectric layer. The substrate includes a conductive feature. The conductive feature is formed in the first dielectric layer, is electrically connected to the conductive feature. The second dielectric layer is formed on the first dielectric layer and is disposed adjacent to the conductive feature. The first dielectric layer and the second dielectric layer are made of different materials.Type: ApplicationFiled: August 30, 2021Publication date: March 2, 2023Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Cheng-Chin LEE, Shao-Kuan LEE, Hsin-Yen HUANG, Hsiao-Kang CHANG, Shau-Lin SHUE
-
Publication number: 20230065583Abstract: A method for manufacturing a semiconductor device includes preparing an electrically conductive structure including a plurality of electrically conductive features, conformally forming a thermally conductive dielectric capping layer on the electrically conductive structure, conformally forming a dielectric coating layer on the thermally conductive dielectric capping layer, filling a sacrificial material into recesses among the electrically conductive features, recessing the sacrificial material to form sacrificial features in the recesses, forming a sustaining layer over the dielectric coating layer to cover the sacrificial features, and removing the sacrificial features to form air gaps covered by the sustaining layer. The thermally conductive dielectric capping layer has a thermal conductivity higher than that of the dielectric coating layer.Type: ApplicationFiled: August 30, 2021Publication date: March 2, 2023Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Ting-Ya LO, Shao-Kuan LEE, Chi-Lin TENG, Cherng-Shiaw TSAI, Cheng-Chin LEE, Kuang-Wei YANG, Hsin-Yen HUANG, Hsiao-Kang CHANG, Shau-Lin SHUE
-
Publication number: 20230068760Abstract: A method for manufacturing a semiconductor structure includes preparing a dielectric structure formed with trenches respectively defined by lateral surfaces of the dielectric structure, forming spacer layers on the lateral surfaces, filling an electrically conductive material into the trenches to form electrically conductive features, selectively depositing a blocking layer on the dielectric structure, selectively depositing a dielectric material on the electrically conductive features to form a capping layer, removing the blocking layer and the dielectric structure to form recesses, forming sacrificial features in the recesses, forming a sustaining layer to cover the sacrificial features; and removing the sacrificial features to obtain the semiconductor structure formed with air gaps confined by the sustaining layer and the spacer layers.Type: ApplicationFiled: August 30, 2021Publication date: March 2, 2023Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hsin-Yen HUANG, Ting-Ya LO, Shao-Kuan LEE, Chi-Lin TENG, Cheng-Chin LEE, Shau-Lin SHUE, Hsiao-Kang CHANG
-
Publication number: 20230066861Abstract: A method for forming an interconnect structure is described. In some embodiments, the method includes forming a conductive layer, removing portions of the conductive layer to form a via portion extending upward from a bottom portion, forming a sacrificial layer over the via portion and the bottom portion, recessing the sacrificial layer to a level substantially the same or below a level of a top surface of the bottom portion, forming a first dielectric material over the via portion, the bottom portion, and the sacrificial layer, and removing the sacrificial layer to form an air gap adjacent the bottom portion.Type: ApplicationFiled: August 30, 2021Publication date: March 2, 2023Inventors: Cheng-Chin LEE, Hsiao-Kang CHANG, Ting-Ya LO, Chi-Lin TENG, Cherng-Shiaw TSAI, Shao-Kuan LEE, Kuang-Wei YANG, Hsin-Yen HUANG, Shau-Lin SHUE
-
Publication number: 20230067027Abstract: An interconnection structure, along with methods of forming such, are described. The structure includes a first conductive feature, a first liner having a first top surface disposed on the first conductive feature, a second conductive feature disposed adjacent the first conductive feature, and a second liner disposed on at least a portion of the second conductive feature. The second liner has a second top surface, and the first liner and the second liner each comprises a two-dimensional material. The structure further includes a first dielectric material disposed between the first and second conductive features and a dielectric layer disposed on the first dielectric material. The dielectric layer has a third top surface, and the first, second, and third top surfaces are substantially co-planar.Type: ApplicationFiled: August 28, 2021Publication date: March 2, 2023Inventors: Cheng-Chin LEE, Shao-Kuan LEE, Kuang-Wei YANG, Cherng-Shiaw TSAI, Hsin-Yen HUANG, Hsiaokang CHANG, Shau-Lin SHUE
-
Publication number: 20230067886Abstract: An interconnection structure, along with methods of forming such, are described. The structure includes a dielectric layer, a first conductive feature disposed in the dielectric layer, a second conductive feature disposed over the first conductive feature, a third conductive feature disposed adjacent the second conductive feature, a first dielectric material disposed between the second and third conductive features, a first one or more graphene layers disposed between the second conductive feature and the first dielectric material, and a second one or more graphene layers disposed between the third conductive feature and the first dielectric material.Type: ApplicationFiled: August 28, 2021Publication date: March 2, 2023Inventors: Shao-Kuan LEE, Cheng-Chin LEE, Cherng-Shiaw TSAI, Kuang-Wei YANG, Hsin-Yen HUANG, Hsiaokang CHANG, Shau-Lin SHUE
-
Patent number: 11557511Abstract: An interconnection structure, along with methods of forming such, are described. The structure includes a dielectric layer, a first conductive feature disposed in the dielectric layer, and a conductive layer disposed over the dielectric layer. The conductive layer includes a first portion and a second portion adjacent the first portion, and the second portion of the conductive layer is disposed over the first conductive feature. The structure further includes a first barrier layer in contact with the first portion of the conductive layer, a second barrier layer in contact with the second portion of the conductive layer, and a support layer in contact with the first and second barrier layers. An air gap is located between the first and second barrier layers, and the dielectric layer and the support layer are exposed to the air gap.Type: GrantFiled: January 12, 2021Date of Patent: January 17, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hsin-Yen Huang, Ting-Ya Lo, Shao-Kuan Lee, Chi-Lin Teng, Cheng-Chin Lee, Hsiaokang Chang, Shau-Lin Shue
-
Patent number: 11551923Abstract: A Taiko wafer ring cut process method is provided. The Taiko wafer ring cut process method includes the following steps. A Taiko wafer is disposed on the platform. The Taiko wafer is performing by laser ring cutting so that a Taiko ring and an edge portion of the Taiko wafer are separated from a wafer portion of the Taiko wafer. The wafer portion of the Taiko wafer is adhered to a frame.Type: GrantFiled: January 15, 2021Date of Patent: January 10, 2023Assignee: PHOENIX SILICON INTERNATIONAL CORP.Inventors: Chien-Hsiung Huang, Chao-Tsung Tsou, Cheng-Yen Lin
-
Patent number: 11545438Abstract: A semiconductor package includes a first interposer, a second interposer, a first die, a second die and at least one bridge structure. The first interposer and the second interposer are embedded by a first dielectric encapsulation. The first die is disposed over and electrically connected to the first interposer. The second die is disposed over and electrically connected to the second interposer. The at least one bridge structure is disposed between the first die and the second die.Type: GrantFiled: November 6, 2020Date of Patent: January 3, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Cheng-Yen Hsieh, Chun-Hui Yu, Ping-Kang Huang, Sao-Ling Chiu, Yi-Jhang Wang
-
Patent number: 11538749Abstract: The present disclosure relates an integrated chip. The integrated chip may include a first interconnect and a second interconnect disposed within a first inter-level dielectric (ILD) layer over a substrate. A lower etch stop structure is disposed on the first ILD layer and a third interconnect is disposed within a second ILD layer that is over the first ILD layer. The third interconnect extends through the lower etch stop structure to contact the first interconnect. An interconnect patterning layer is disposed on the second interconnect and laterally adjacent to the lower etch stop structure.Type: GrantFiled: November 13, 2020Date of Patent: December 27, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shao-Kuan Lee, Hsin-Yen Huang, Cheng-Chin Lee, Kuang-Wei Yang, Ting-Ya Lo, Chi-Lin Teng, Hsiao-Kang Chang, Shau-Lin Shue
-
Patent number: 11536260Abstract: A MEMS pump includes a first substrate, a first oxide layer, a second substrate, a second oxide layer, a third substrate and a piezoelectric element sequentially stacked to form the entire structure of the MEMS pump. The first substrate has a first thickness and at least one inlet aperture. The first oxide layer has at least one fluid inlet channel and a convergence chamber, wherein the fluid inlet channel communicates with the convergence chamber and the inlet aperture. The second substrate has a second thickness and a through hole, and the through hole is misaligned with the inlet aperture and communicates with the convergence chamber. The second oxide layer has a first chamber with a concave central portion. The third substrate has a third thickness and a plurality of gas flow channels, wherein the gas flow channels are misaligned with the through hole.Type: GrantFiled: September 13, 2019Date of Patent: December 27, 2022Assignee: MICROJET TECHNOLOGY CO., LTD.Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai
-
Publication number: 20220406648Abstract: An interconnection structure includes a first dielectric layer, a first conductive feature, a first liner layer, a second conductive feature, a second liner layer, and an air gap. The first conductive feature is disposed in the first dielectric layer. The first liner layer is disposed between the first conductive feature and the first dielectric layer. The second conductive feature penetrates the first dielectric layer. The second liner layer is disposed between the second conductive feature and the first dielectric layer. The air gap is disposed in the first dielectric layer between the first liner layer and the second liner layer. The first liner layer and the second liner layer include metal oxide, metal nitride, or silicon oxide doped carbide.Type: ApplicationFiled: March 18, 2022Publication date: December 22, 2022Inventors: Cheng-Chin LEE, Hsiao-Kang CHANG, Hsin-Yen HUANG, Cherng-Shiaw TSAI, Shao-Kuan LEE, Shau-Lin SHUE
-
Patent number: 11527504Abstract: External electrical connectors and methods of forming such external electrical connectors are discussed. A method includes forming an external electrical connector structure on a substrate. The forming the external electrical connector structure includes plating a pillar on the substrate at a first agitation level affected at the substrate in a first solution. The method further includes plating solder on the external electrical connector structure at a second agitation level affected at the substrate in a second solution. The second agitation level affected at the substrate is greater than the first agitation level affected at the substrate. The plating the solder further forms a shell on a sidewall of the external electrical connector structure.Type: GrantFiled: August 10, 2020Date of Patent: December 13, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Meng-Fu Shih, Chun-Yen Lo, Cheng-Lin Huang, Wen-Ming Chen, Chien-Ming Huang, Yuan-Fu Liu, Yung-Chiuan Cheng, Wei-Chih Huang, Chen-Hsun Liu, Chien-Pin Chan, Yu-Nu Hsu, Chi-Hung Lin, Te-Hsun Pang, Chin-Yu Ku
-
Patent number: 11527435Abstract: A method and structure for forming an enhanced metal capping layer includes forming a portion of a multi-level metal interconnect network over a substrate. In some embodiments, the portion of the multi-level metal interconnect network includes a plurality of metal regions. In some cases, a dielectric region is disposed between each of the plurality of metal regions. By way of example, a metal capping layer may be deposited over each of the plurality of metal regions. Thereafter, in some embodiments, a self-assembled monolayer (SAM) may be deposited, where the SAM forms selectively on the metal capping layer, while the dielectric region is substantially free of the SAM. In various examples, after selectively forming the SAM on the metal capping layer, a thermal process may be performed, where the SAM prevents diffusion of the metal capping layer during the thermal process.Type: GrantFiled: July 27, 2021Date of Patent: December 13, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTDInventors: Shao-Kuan Lee, Cheng-Chin Lee, Hsin-Yen Huang, Hai-Ching Chen, Shau-Lin Shue
-
Publication number: 20220374125Abstract: The present invention provides a touch display panel. The substrate includes a display region and a non-display region. The first conductive pads, the second conductive pads, the first conductive lines and the second conductive lines are disposed in the non-display region. The first conductive lines are electrically connected to the first conductive pads and the sub-pixels in the display region. The second conductive lines are electrically connected to the second conductive pads and the touch electrodes in the display region. The second conductive line includes a first line segment, a second line segment and a third line segment. The first line segment extends in a first direction and is connected to the second conductive pad. The second line segment extends from the non-display region to the display region. The third line segment extends in a second direction and is connected to the first line segment and the second line segment.Type: ApplicationFiled: April 27, 2022Publication date: November 24, 2022Applicant: HANNSTAR DISPLAY CORPORATIONInventors: Mu-Kai Kang, Jing-Xuan Chen, Cheng-Yen Yeh, Sz-Kai Huang