Patents by Inventor Cheng-Yen YU

Cheng-Yen YU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088297
    Abstract: In a method of manufacturing a semiconductor device including a Fin FET, a fin structure extending in a first direction is formed over a substrate. An isolation insulating layer is formed over the substrate so that an upper portion of the fin structure is exposed from the isolation insulating layer. A gate structure extending in a second direction crossing the first direction is formed over a part of the fin structure. A fin mask layer is formed on sidewalls of a source/drain region of the fin structure. The source/drain region of the fin structure is recessed. An epitaxial source/drain structure is formed over the recessed fin structure. In the recessing the source/drain region of the fin structure, a plasma process combining etching and deposition processes is used to form a recess having a rounded corner shape in a cross section along the second direction.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yen YU, Po-Chi WU, Yueh-Chun LAI
  • Patent number: 11855222
    Abstract: In a method of manufacturing a semiconductor device including a Fin FET, a fin structure extending in a first direction is formed over a substrate. An isolation insulating layer is formed over the substrate so that an upper portion of the fin structure is exposed from the isolation insulating layer. A gate structure extending in a second direction crossing the first direction is formed over a part of the fin structure. A fin mask layer is formed on sidewalls of a source/drain region of the fin structure. The source/drain region of the fin structure is recessed. An epitaxial source/drain structure is formed over the recessed fin structure. In the recessing the source/drain region of the fin structure, a plasma process combining etching and deposition processes is used to form a recess having a rounded corner shape in a cross section along the second direction.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yen Yu, Po-Chi Wu, Yueh-Chun Lai
  • Patent number: 11705519
    Abstract: A semiconductor device includes a Fin FET device. The Fin FET device includes a first fin structure extending in a first direction and protruding from an isolation insulating layer, a first gate stack including a first gate electrode layer and a first gate dielectric layer, covering a portion of the first fin structure and extending in a second direction perpendicular to the first direction, and a first source and a first drain, each including a first stressor layer disposed over the first fin structure. The first fin structure and the isolation insulating layer are disposed over a substrate. A height Ha of an interface between the first fin structure and the first stressor layer measured from the substrate is greater than a height Hb of a lowest height of the isolation insulating layer measured from the substrate.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: July 18, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yen Yu, Che-Cheng Chang, Tung-Wen Cheng, Zhe-Hao Zhang, Bo-Feng Young
  • Publication number: 20220336667
    Abstract: In a method of manufacturing a semiconductor device including a Fin FET, a fin structure extending in a first direction is formed over a substrate. An isolation insulating layer is formed over the substrate so that an upper portion of the fin structure is exposed from the isolation insulating layer. A gate structure extending in a second direction crossing the first direction is formed over a part of the fin structure. A fin mask layer is formed on sidewalls of a source/drain region of the fin structure. The source/drain region of the fin structure is recessed. An epitaxial source/drain structure is formed over the recessed fin structure. In the recessing the source/drain region of the fin structure, a plasma process combining etching and deposition processes is used to form a recess having a rounded corner shape in a cross section along the second direction.
    Type: Application
    Filed: July 1, 2022
    Publication date: October 20, 2022
    Inventors: Cheng-Yen YU, Po-Chi WU, Yueh-Chun LAI
  • Patent number: 11387365
    Abstract: In a method of manufacturing a semiconductor device including a Fin FET, a fin structure extending in a first direction is formed over a substrate. An isolation insulating layer is formed over the substrate so that an upper portion of the fin structure is exposed from the isolation insulating layer. A gate structure extending in a second direction crossing the first direction is formed over a part of the fin structure. A fin mask layer is formed on sidewalls of a source/drain region of the fin structure. The source/drain region of the fin structure is recessed. An epitaxial source/drain structure is formed over the recessed fin structure. In the recessing the source/drain region of the fin structure, a plasma process combining etching and deposition processes is used to form a recess having a rounded corner shape in a cross section along the second direction.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: July 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yen Yu, Po-Chi Wu, Yueh-Chun Lai
  • Publication number: 20210313469
    Abstract: In a method of manufacturing a semiconductor device including a Fin FET, a fin structure extending in a first direction is formed over a substrate. An isolation insulating layer is formed over the substrate so that an upper portion of the fin structure is exposed from the isolation insulating layer. A gate structure extending in a second direction crossing the first direction is formed over a part of the fin structure. A fin mask layer is formed on sidewalls of a source/drain region of the fin structure. The source/drain region of the fin structure is recessed. An epitaxial source/drain structure is formed over the recessed fin structure. In the recessing the source/drain region of the fin structure, a plasma process combining etching and deposition processes is used to form a recess having a rounded corner shape in a cross section along the second direction.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 7, 2021
    Inventors: Cheng-Yen YU, Po-Chi WU, Yueh-Chun LAI
  • Publication number: 20210313468
    Abstract: A semiconductor device includes a Fin FET device. The Fin FET device includes a first fin structure extending in a first direction and protruding from an isolation insulating layer, a first gate stack including a first gate electrode layer and a first gate dielectric layer, covering a portion of the first fin structure and extending in a second direction perpendicular to the first direction, and a first source and a first drain, each including a first stressor layer disposed over the first fin structure. The first fin structure and the isolation insulating layer are disposed over a substrate. A height Ha of an interface between the first fin structure and the first stressor layer measured from the substrate is greater than a height Hb of a lowest height of the isolation insulating layer measured from the substrate.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Cheng-Yen YU, Che-Cheng CHANG, Tung-Wen CHENG, Zhe-Hao ZHANG, Bo-Feng YOUNG
  • Patent number: 11043593
    Abstract: A semiconductor device includes a Fin FET device. The Fin FET device includes a first fin structure extending in a first direction and protruding from an isolation insulating layer, a first gate stack including a first gate electrode layer and a first gate dielectric layer, covering a portion of the first fin structure and extending in a second direction perpendicular to the first direction, and a first source and a first drain, each including a first stressor layer disposed over the first fin structure. The first fin structure and the isolation insulating layer are disposed over a substrate. A height Ha of an interface between the first fin structure and the first stressor layer measured from the substrate is greater than a height Hb of a lowest height of the isolation insulating layer measured from the substrate.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: June 22, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yen Yu, Che-Cheng Chang, Tung-Wen Cheng, Zhe-Hao Zhang, Bo-Feng Young
  • Publication number: 20200035832
    Abstract: A semiconductor device includes a Fin FET device. The Fin FET device includes a first fin structure extending in a first direction and protruding from an isolation insulating layer, a first gate stack including a first gate electrode layer and a first gate dielectric layer, covering a portion of the first fin structure and extending in a second direction perpendicular to the first direction, and a first source and a first drain, each including a first stressor layer disposed over the first fin structure. The first fin structure and the isolation insulating layer are disposed over a substrate. A height Ha of an interface between the first fin structure and the first stressor layer measured from the substrate is greater than a height Hb of a lowest height of the isolation insulating layer measured from the substrate.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Cheng-Yen YU, Che-Cheng CHANG, Tung-Wen CHENG, Zhe-Hao ZHANG, Bo-Feng YOUNG
  • Patent number: 10483394
    Abstract: A semiconductor device includes a Fin FET device. The Fin FET device includes a first fin structure extending in a first direction and protruding from an isolation insulating layer, a first gate stack including a first gate electrode layer and a first gate dielectric layer, covering a portion of the first fin structure and extending in a second direction perpendicular to the first direction, and a first source and a first drain, each including a first stressor layer disposed over the first fin structure. The first fin structure and the isolation insulating layer are disposed over a substrate. A height Ha of an interface between the first fin structure and the first stressor layer measured from the substrate is greater than a height Hb of a lowest height of the isolation insulating layer measured from the substrate.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: November 19, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yen Yu, Che-Cheng Chang, Tung-Wen Cheng, Zhe-Hao Zhang, Bo-Feng Young
  • Publication number: 20180342619
    Abstract: A semiconductor device includes a Fin FET device. The Fin FET device includes a first fin structure extending in a first direction and protruding from an isolation insulating layer, a first gate stack including a first gate electrode layer and a first gate dielectric layer, covering a portion of the first fin structure and extending in a second direction perpendicular to the first direction, and a first source and a first drain, each including a first stressor layer disposed over the first fin structure. The first fin structure and the isolation insulating layer are disposed over a substrate. A height Ha of an interface between the first fin structure and the first stressor layer measured from the substrate is greater than a height Hb of a lowest height of the isolation insulating layer measured from the substrate.
    Type: Application
    Filed: August 6, 2018
    Publication date: November 29, 2018
    Inventors: Cheng-Yen YU, Che-Cheng CHANG, Tung-Wen CHENG, Zhe-Hao ZHANG, Bo-Feng YOUNG
  • Patent number: 10043906
    Abstract: A semiconductor device includes a Fin FET device. The Fin FET device includes a first fin structure extending in a first direction and protruding from an isolation insulating layer, a first gate stack including a first gate electrode layer and a first gate dielectric layer, covering a portion of the first fin structure and extending in a second direction perpendicular to the first direction, and a first source and a first drain, each including a first stressor layer disposed over the first fin structure. The first fin structure and the isolation insulating layer are disposed over a substrate. A height Ha of an interface between the first fin structure and the first stressor layer measured from the substrate is greater than a height Hb of a lowest height of the isolation insulating layer measured from the substrate.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: August 7, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yen Yu, Che-Cheng Chang, Tung-Wen Cheng, Zhe-Hao Zhang, Bo-Feng Young
  • Patent number: 9991385
    Abstract: The present disclosure relates to a semiconductor device that controls a strain on a channel region by forming a dielectric material in recesses, adjacent to a channel region, in order to provide control over a volume and shape of a strain inducing material of epitaxial source/drain regions formed within the recesses. In some embodiments, the semiconductor device has epitaxial source/drain regions arranged in recesses within an upper surface of a semiconductor body on opposing sides of a channel region. A gate structure is arranged over the channel region, and a dielectric material is arranged laterally between the epitaxial source/drain regions and the channel region. The dielectric material consumes some volume of the recesses, thereby reducing a volume of strain inducing material in epitaxial source/drain regions formed in the recesses.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: June 5, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tung-Wen Cheng, Che-Cheng Chang, Mu-Tsang Lin, Bo-Feng Young, Cheng-Yen Yu
  • Publication number: 20170133506
    Abstract: A semiconductor device includes a Fin FET device. The Fin FET device includes a first fin structure extending in a first direction and protruding from an isolation insulating layer, a first gate stack including a first gate electrode layer and a first gate dielectric layer, covering a portion of the first fin structure and extending in a second direction perpendicular to the first direction, and a first source and a first drain, each including a first stressor layer disposed over the first fin structure. The first fin structure and the isolation insulating layer are disposed over a substrate. A height Ha of an interface between the first fin structure and the first stressor layer measured from the substrate is greater than a height Hb of a lowest height of the isolation insulating layer measured from the substrate.
    Type: Application
    Filed: January 10, 2017
    Publication date: May 11, 2017
    Inventors: Cheng-Yen YU, Che-Cheng CHANG, Tung-Wen CHENG, Zhe-Hao ZHANG, Bo-Feng YOUNG
  • Publication number: 20170077302
    Abstract: The present disclosure relates to a semiconductor device that controls a strain on a channel region by forming a dielectric material in recesses, adjacent to a channel region, in order to provide control over a volume and shape of a strain inducing material of epitaxial source/drain regions formed within the recesses. In some embodiments, the semiconductor device has epitaxial source/drain regions arranged in recesses within an upper surface of a semiconductor body on opposing sides of a channel region. A gate structure is arranged over the channel region, and a dielectric material is arranged laterally between the epitaxial source/drain regions and the channel region. The dielectric material consumes some volume of the recesses, thereby reducing a volume of strain inducing material in epitaxial source/drain regions formed in the recesses.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventors: Tung-Wen Cheng, Che-Cheng Chang, Mu-Tsang Lin, Bo-Feng Young, Cheng-Yen Yu
  • Patent number: 9564528
    Abstract: A method for manufacturing a semiconductor device includes forming a fin structure over a substrate. An isolation insulating layer is formed so that an upper part of the fin structure protrudes from the isolation insulating layer. A gate structure is formed over a part of the fin structure. Recesses are formed in the isolation insulating layer at both sides of the fin structure. A recess is formed in a portion of the fin structure which is not covered by the gate structure. The recess in the fin structure and the recesses in the isolation insulating layer are formed such that a depth D1 of the recess in the fin structure and a depth D2 of the recesses in the isolation insulating layer measured from an uppermost surface of the isolation insulating layer satisfy 0?D1?D2 (but D1 and D2 are not zero at the same time).
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: February 7, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yen Yu, Che-Cheng Chang, Tung-Wen Cheng, Zhe-Hao Zhang, Bo-Feng Young
  • Publication number: 20160211372
    Abstract: A method for manufacturing a semiconductor device includes forming a fin structure over a substrate. An isolation insulating layer is formed so that an upper part of the fin structure protrudes from the isolation insulating layer. A gate structure is formed over a part of the fin structure. Recesses are formed in the isolation insulating layer at both sides of the fin structure. A recess is formed in a portion of the fin structure which is not covered by the gate structure. The recess in the fin structure and the recesses in the isolation insulating layer are formed such that a depth D1 of the recess in the fin structure and a depth D2 of the recesses in the isolation insulating layer measured from an uppermost surface of the isolation insulating layer satisfy 0?D1?D2 (but D1 and D2 are not zero at the same time).
    Type: Application
    Filed: June 24, 2015
    Publication date: July 21, 2016
    Inventors: Cheng-Yen YU, Che-Cheng CHANG, Tung-Wen CHENG, Zhe-Hao Zhang, Bo-Feng YOUNG