Patents by Inventor Cheng-Ying Huang

Cheng-Ying Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12288803
    Abstract: A transistor includes a body of semiconductor material, where the body has laterally opposed body sidewalls and a top surface. A gate structure contacts the top surface of the body. A source region contacts a first one of the laterally opposed body sidewalls and a drain region contacts a second one of the laterally opposed body sidewalls. A first isolation region is under the source region and has a top surface in contact with a bottom surface of the source region. A second isolation region is under the drain region and has a top surface in contact with a bottom surface of the drain region. Depending on the transistor configuration, a major portion of the inner-facing sidewalls of the first and second isolation regions contact respective sidewalls of either a subfin structure (e.g., FinFET transistor configurations) or a lower portion of a gate structure (e.g., gate-all-around transistor configuration).
    Type: Grant
    Filed: December 14, 2023
    Date of Patent: April 29, 2025
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Cheng-Ying Huang, Matthew V. Metz, Nicholas G. Minutillo, Sean T. Ma, Anand S. Murthy, Jack T. Kavalieros, Tahir Ghani, Gilbert Dewey
  • Publication number: 20250113603
    Abstract: Gate-all-around integrated circuit structures having depopulated channel structures, and methods of fabricating depopulated channel structures using split source or drain approaches, are described. For example, an integrated circuit structure includes a first vertical arrangement of nanowires, the first vertical arrangement of nanowires having one or more dielectric nanowires coupled to a dielectric source or drain structure. A first gate stack is over the first vertical arrangement of nanowires. A second vertical arrangement of nanowires is laterally spaced apart from the first vertical arrangement of nanowires, the second vertical arrangement of nanowires having one or more semiconductor nanowires coupled to an epitaxial source or drain structure, the one or more semiconductor nanowires horizontally corresponding to the one or more dielectric nanowires, and the epitaxial source or drain structure laterally spaced apart from the dielectric source or drain structure.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 3, 2025
    Inventors: Munzarin QAYYUM, Rohit GALATAGE, Marko RADOSAVLJEVIC, Cheng-Ying HUANG, Evan CLINTON, David BENNETT, Jami WIEDEMER
  • Patent number: 12255137
    Abstract: Embodiments disclosed herein include electronic systems with vias that include a horizontal and vertical portion in order to provide interconnects to stacked components, and methods of forming such systems. In an embodiment, an electronic system comprises a board, a package substrate electrically coupled to the board, and a die electrically coupled to the package substrate. In an embodiment the die comprises a stack of components, and a via adjacent to the stack of components, wherein the via comprises a vertical portion and a horizontal portion.
    Type: Grant
    Filed: January 22, 2024
    Date of Patent: March 18, 2025
    Assignee: Intel Corporation
    Inventors: Ehren Mannebach, Aaron Lilak, Hui Jae Yoo, Patrick Morrow, Anh Phan, Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey, Rishabh Mehandru
  • Patent number: 12243875
    Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.
    Type: Grant
    Filed: January 10, 2024
    Date of Patent: March 4, 2025
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Cheng-Ying Huang, Marko Radosavljevic, Christopher M. Neumann, Susmita Ghose, Varun Mishra, Cory Weber, Stephen M. Cea, Tahir Ghani, Jack T. Kavalieros
  • Patent number: 12230635
    Abstract: Gate-all-around integrated circuit structures having depopulated channel structures, and methods of fabricating gate-all-around integrated circuit structures having depopulated channel structures using a selective bottom-up approach, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a substrate. The vertical arrangement of nanowires has one or more active nanowires above one or more oxide nanowires. A first gate stack is over and around the one or more active nanowires. A second gate stack is over and around the one or more oxide nanowires.
    Type: Grant
    Filed: November 17, 2023
    Date of Patent: February 18, 2025
    Assignee: Intel Corporation
    Inventors: Nicole Thomas, Ehren Mannebach, Cheng-Ying Huang, Marko Radosavljevic
  • Patent number: 12224202
    Abstract: Embodiments of the present disclosure may generally relate to systems, apparatus, and/or processes to form volumes of oxide within a fin, such as a Si fin. In embodiments, this may be accomplished by applying a catalytic oxidant material on a side of a fin and then annealing to form a volume of oxide. In embodiments, this may be accomplished by using a plasma implant technique or a beam-line implant technique to introduce oxygen ions into an area of the fin and then annealing to form a volume of oxide. Processes described here may be used manufacture a transistor, a stacked transistor, or a three-dimensional (3-D) monolithic stacked transistor.
    Type: Grant
    Filed: July 21, 2023
    Date of Patent: February 11, 2025
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Gilbert Dewey, Jack T. Kavalieros, Aaron Lilak, Ehren Mannebach, Patrick Morrow, Anh Phan, Willy Rachmady, Hui Jae Yoo
  • Publication number: 20250031362
    Abstract: Monolithic two-dimensional (2D) arrays of double-sided DRAM cells including a frontside bit cell over a backside bit cell. Each double-sided cell includes a stacked transistor structure having at least a first transistor over a second transistor. Each double-sided cell further includes a first capacitor on a frontside of the stacked transistor structure and electrically coupled to a source/drain of the first transistor. Each double-sided cell further includes a second capacitor on a backside of the stacked transistor structure and electrically coupled to a source/drain of the second transistor. Frontside cell addressing interconnects are electrically coupled to other terminals of at least the first transistor while one or more backside addressing interconnects are electrically coupled to at least one terminal of the second transistor or second capacitor.
    Type: Application
    Filed: October 4, 2024
    Publication date: January 23, 2025
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Ashish Agrawal, Gilbert Dewey, Abhishek A. Sharma, Wilfred Gomes, Jack Kavalieros
  • Publication number: 20250006737
    Abstract: A material stack comprising a plurality of bi-layers, each bi-layer comprising two semiconductor material layers, is fabricated into a transistor structure including a first stack of channel materials that is coupled to an n-type source and drain and in a vertical stack with a second stack of channel materials that is coupled to a p-type source drain. Within the first stack of channel material layers a first of two semiconductor material layers may be replaced with a first gate stack while within the second stack of channel materials a second of two semiconductor material layers may be replaced with a second gate stack.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 2, 2025
    Applicant: Intel Corporation
    Inventors: Aryan Navabi-Shirazi, Michael Babb, Kai Loon Cheong, Cheng-Ying Huang, Mohammad Hasan, Leonard P. Guler, Marko Radosavljevic
  • Patent number: 12183668
    Abstract: Thin-film transistors and MIM capacitors in exclusion zones are described. In an example, an integrated circuit structure includes a semiconductor substrate having a zone with metal oxide semiconductor (MOS) transistors therein, and having a zone that excludes MOS transistors. A back-end-of-line (BEOL) structure is above the semiconductor substrate. A thin-film transistor (TFT) and/or a metal-insulator-metal (MIM) capacitor is in the BEOL structure. The TFT and/or MIM capacitor is vertically over the zone that excludes MOS transistors.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: December 31, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey, Rajat Paul
  • Patent number: 12148806
    Abstract: A device is disclosed. The device includes a first epitaxial region, a second epitaxial region, a first gate region between the first epitaxial region and a second epitaxial region, a first dielectric structure underneath the first epitaxial region, a second dielectric structure underneath the second epitaxial region, a third epitaxial region underneath the first epitaxial region, a fourth epitaxial region underneath the second epitaxial region, and a second gate region between the third epitaxial region and a fourth epitaxial region and below the first gate region. The device also includes, a conductor via extending from the first epitaxial region, through the first dielectric structure and the third epitaxial region, the conductor via narrower at an end of the conductor via that contacts the first epitaxial region than at an opposite end.
    Type: Grant
    Filed: January 9, 2024
    Date of Patent: November 19, 2024
    Assignee: Intel Corporation
    Inventors: Ehren Mannebach, Aaron Lilak, Hui Jae Yoo, Patrick Morrow, Anh Phan, Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey
  • Patent number: 12120865
    Abstract: Monolithic two-dimensional (2D) arrays of double-sided DRAM cells including a frontside bit cell over a backside bit cell. Each double-sided cell includes a stacked transistor structure having at least a first transistor over a second transistor. Each double-sided cell further includes a first capacitor on a frontside of the stacked transistor structure and electrically coupled to a source/drain of the first transistor. Each double-sided cell further includes a second capacitor on a backside of the stacked transistor structure and electrically coupled to a source/drain of the second transistor. Frontside cell addressing interconnects are electrically coupled to other terminals of at least the first transistor while one or more backside addressing interconnects are electrically coupled to at least one terminal of the second transistor or second capacitor.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: October 15, 2024
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Ashish Agrawal, Gilbert Dewey, Abhishek A. Sharma, Wilfred Gomes, Jack Kavalieros
  • Patent number: 12107085
    Abstract: Stacked transistor structures having a conductive interconnect between source/drain regions of upper and lower transistors. In some embodiments, the interconnect is provided, at least in part, by highly doped epitaxial material deposited in the upper transistor's source/drain region. In such cases, the epitaxial material seeds off of an exposed portion of semiconductor material of or adjacent to the upper transistor's channel region and extends downward into a recess that exposes the lower transistor's source/drain contact structure. The epitaxial source/drain material directly contacts the lower transistor's source/drain contact structure, to provide the interconnect. In other embodiments, the epitaxial material still seeds off the exposed semiconductor material of or proximate to the channel region and extends downward into the recess, but need not contact the lower contact structure.
    Type: Grant
    Filed: July 7, 2023
    Date of Patent: October 1, 2024
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Gilbert Dewey, Cheng-Ying Huang, Christopher Jezewski, Ehren Mannebach, Rishabh Mehandru, Patrick Morrow, Anand S. Murthy, Anh Phan, Willy Rachmady
  • Patent number: 12068319
    Abstract: Techniques are disclosed for integrating semiconductor oxide materials as alternate channel materials for n-channel devices in integrated circuits. The semiconductor oxide material may have a wider band gap than the band gap of silicon. Additionally or alternatively, the high mobility, wide band gap semiconductor oxide material may have a higher electron mobility than silicon. The use of such semiconductor oxide materials can provide improved NMOS channel performance in the form of less off-state leakage and, in some instances, improved electron mobility as compared to silicon NMOS channels.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: August 20, 2024
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Willy Rachmady, Jack T. Kavalieros, Cheng-Ying Huang, Matthew V. Metz, Sean T. Ma, Harold Kennel, Tahir Ghani, Abhishek A. Sharma
  • Publication number: 20240234422
    Abstract: Embodiments disclosed herein include stacked forksheet transistor devices, and methods of fabricating stacked forksheet transistor devices. In an example, an integrated circuit structure includes a backbone. A first transistor device includes a first vertical stack of semiconductor channels adjacent to an edge of the backbone. A second transistor device includes a second vertical stack of semiconductor channels adjacent to the edge of the backbone. The second transistor device is stacked on the first transistor device.
    Type: Application
    Filed: March 22, 2024
    Publication date: July 11, 2024
    Inventors: Cheng-Ying HUANG, Gilbert DEWEY, Anh PHAN, Nicole K. THOMAS, Urusa ALAAN, Seung Hoon SUNG, Christopher M. NEUMANN, Willy RACHMADY, Patrick MORROW, Hui Jae YOO, Richard E. SCHENKER, Marko RADOSAVLJEVIC, Jack T. KAVALIEROS, Ehren MANNEBACH
  • Publication number: 20240222376
    Abstract: Technologies for ribbon field-effect transistors with variable nanoribbon channel dimensions are disclosed. In an illustrative embodiment, a stack of semiconductor nanoribbons are formed, with each semiconductor nanoribbon having a source region, a channel region, and a drain region. Some or all of the channel regions can be selectively narrowed and/or thinned, allowing for the drive and/or leakage current to be tuned. In some embodiments, one or more of the semiconductor nanoribbons near the top of the stack can be narrowed and/or thinned. In other embodiments, one or more of the semiconductor nanoribbons at or closer to the bottom of the stack can be narrowed and/or thinned.
    Type: Application
    Filed: December 30, 2022
    Publication date: July 4, 2024
    Applicant: Intel Corporation
    Inventors: Marko Radosavljevic, Jami A. Wiedemer, Munzarin F. Qayyum, Cheng-Ying Huang, Rohit V. Galatage, Evan A. Clinton
  • Publication number: 20240222521
    Abstract: Technologies for ribbon field-effect transistors with variable nanoribbon numbers are disclosed. In an illustrative embodiment, a stack of semiconductor nanoribbons is formed, with each semiconductor nanoribbon having a source region, a channel region, and a drain region. Some or all of the channel regions can be selectively removed, allowing for the drive and/or leakage current to be tuned. In some embodiments, one or more of the semiconductor nanoribbons near the top of the stack can be removed. In other embodiments, one or more of the semiconductor nanoribbons at or closer to the bottom of the stack can be removed.
    Type: Application
    Filed: December 30, 2022
    Publication date: July 4, 2024
    Applicant: Intel Corporation
    Inventors: Evan A. Clinton, Rohit V. Galatage, Cheng-Ying Huang, Jack T. Kavalieros, Munzarin F. Qayyum, Marko Radosavljevic, Jami A. Wiedemer
  • Patent number: 12020929
    Abstract: Embodiments herein relate to systems, apparatuses, or processes directed to manufacturing transistors that include a substrate, an epitaxial layer with a first side and a second side opposite the first side, where the first side and the second side of the epitaxial layer are substantially planar, where the second side of the epitaxial layer is substantially parallel to the first side, and where the first side of the epitaxial layer is directly coupled with a side of the substrate. In particular, the epitaxial layer may be adjacent to an oxide layer having a side that is substantially planar, where the second side of the epitaxial layer is adjacent to the side of the oxide layer, and the epitaxial layer was grown and the growth was constrained by the oxide layer.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: June 25, 2024
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Gilbert Dewey, Jack T. Kavalieros, Aaron Lilak, Ehren Mannebach, Patrick Morrow, Anh Phan, Willy Rachmady, Hui Jae Yoo
  • Publication number: 20240204103
    Abstract: Disclosed herein are transistor gate-channel arrangements with transistor gate stacks that include multiple dipole materials, and related methods and devices. For example, in some embodiments, a transistor gate-channel arrangement may include a channel material and a transistor gate stack. The transistor gate stack may include a gate electrode material and a gate dielectric material between the gate electrode material and the channel material, where the gate dielectric material includes a first dipole material and a second dipole material where one of the first and second dipole materials is a P-shifter dipole material and the other one is an N-shifter dipole material.
    Type: Application
    Filed: December 14, 2022
    Publication date: June 20, 2024
    Applicant: Intel Corporation
    Inventors: Rohit Galatage, Cheng-Ying Huang, Dan S. Lavric, Sarah Atanasov, Shao Ming Koh, Jack T. Kavalieros, Marko Radosavljevic, Mauro J. Kobrinsky, Jami Wiedemer, Munzarin Qayyum, Evan Clinton
  • Publication number: 20240204060
    Abstract: IC structures with nanoribbon stacks without dielectric protection caps for top nanoribbons, and associated methods and devices, are disclosed. An example IC structure includes a stack of nanoribbons, an opening over the top nanoribbon of the stack of nanoribbons, and a gate electrode material in the opening, where the opening has a first portion, a second portion, and a third portion, the second portion is between the first portion and the third portion, and where a width of a portion of the gate electrode material in the second portion is smaller than a width of a portion of the gate electrode material in the first portion. In such an IC structure, a gate insulator on the sidewalls of the first portion of the opening is materially discontinuous from a gate insulator on the sidewalls of the third portion of the opening.
    Type: Application
    Filed: December 14, 2022
    Publication date: June 20, 2024
    Applicant: Intel Corporation
    Inventors: Rohit Galatage, Cheng-Ying Huang, Jack T. Kavalieros, Marko Radosavljevic, Mauro J. Kobrinsky, Jami Wiedemer, Munzarin Qayyum, Evan Clinton
  • Patent number: 11996404
    Abstract: A monolithic three-dimensional integrated circuit may include multiple transistor levels separated by one or more levels of metallization. An upper level transistor structure may include a monocrystalline channel material over a bottom gate stack. The channel material and the gate stack materials may be formed on a donor substrate at any suitable temperature, and subsequently transferred from the donor substrate to a host substrate that includes lower-level circuitry. The upper-level transistor may be patterned from the transferred layers so that the gate electrode includes one or more bonding layers. Source and drain material may be patterned from a source and drain material layer that was transferred from the donor substrate along with the channel material, or source and drain material may be grown at low temperatures from the transferred channel material.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: May 28, 2024
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Gilbert Dewey, Ashish Agrawal, Kimin Jun, Willy Rachmady, Zachary Geiger, Cory Bomberger, Ryan Keech, Koustav Ganguly, Anand Murthy, Jack Kavalieros