Patents by Inventor Cheng-Yu Chou
Cheng-Yu Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240379714Abstract: Some embodiments relate to a CMOS image sensor disposed on a substrate. A plurality of pixel regions comprising a plurality of photodiodes, respectively, are configured to receive radiation that enters a back-side of the substrate. A boundary deep trench isolation (BDTI) structure is disposed at boundary regions of the pixel regions, and includes a first set of BDTI segments extending in a first direction and a second set of BDTI segments extending in a second direction perpendicular to the first direction to laterally surround the photodiode. The BDTI structure comprises a first material. A pixel deep trench isolation (PDTI) structure is disposed within the BDTI structure and overlies the photodiode. The PDTI structure comprises a second material that differs from the first material, and includes a first PDTI segment extending in the first direction such that the first PDTI segment is surrounded by the BDTI structure.Type: ApplicationFiled: July 24, 2024Publication date: November 14, 2024Inventors: Cheng Yu Huang, Wei-Chieh Chiang, Keng-Yu Chou, Chun-Hao Chuang, Wen-Hau Wu, Chih-Kung Chang
-
Publication number: 20240379703Abstract: The present disclosure relates to an integrated chip including a substrate and a pixel. The pixel includes a photodetector. The photodetector is in the substrate. The integrated chip further includes a first inner trench isolation structure and an outer trench isolation structure that extend into the substrate. The first inner trench isolation structure laterally surrounds the photodetector in a first closed loop. The outer trench isolation structure laterally surrounds the first inner trench isolation structure along a boundary of the pixel in a second closed loop and is laterally separated from the first inner trench isolation structure. Further, the integrated chip includes a scattering structure that is defined, at least in part, by the first inner trench isolation structure and that is configured to increase an angle at which radiation impinges on the outer trench isolation structure.Type: ApplicationFiled: July 21, 2024Publication date: November 14, 2024Inventors: Cheng Yu Huang, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu, Chih-Kung Chang
-
Publication number: 20240371895Abstract: A method for forming an image sensor package is provided. An image sensor chip is formed over a package substrate. A protection layer is formed overlying the image sensor chip. The protection layer has a planar top surface and a bottom surface lining and contacting structures under the protection layer. An opening is formed into the protection layer and spaced around a periphery of the image sensor chip. A light shielding material is filled in the opening to form an on-wafer shield structure having a sidewall directly contact the protection layer.Type: ApplicationFiled: July 17, 2024Publication date: November 7, 2024Inventors: Wen-Hau Wu, Chun-Hao Chuang, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Cheng Yu Huang
-
Publication number: 20240363671Abstract: A method includes performing an anisotropic etching on a semiconductor substrate to form a trench. The trench has vertical sidewalls and a rounded bottom connected to the vertical sidewalls. A damage removal step is performed to remove a surface layer of the semiconductor substrate, with the surface layer exposed to the trench. The rounded bottom of the trench is etched to form a slant straight bottom surface. The trench is filled to form a trench isolation region in the trench.Type: ApplicationFiled: July 10, 2024Publication date: October 31, 2024Inventors: Cheng-Hsien Chou, Chih-Yu Lai, Shih Pei Chou, Yen-Ting Chiang, Hsiao-Hui Tseng, Min-Ying Tsai
-
Publication number: 20240363668Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes at least one device on a front side of a semiconductor substrate. A plurality of grating layers are under the at least one device. The plurality of grating layers include at least a first material having a first refractive index alternating with a second material having a second refractive index. Contacts extend through an interlevel dielectric material, and further extend through the semiconductor substrate, to directly contact at least one of the first material and the second material below the at least one device and below the semiconductor substrate underlying the interlevel dielectric material.Type: ApplicationFiled: July 11, 2024Publication date: October 31, 2024Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
-
Publication number: 20240332332Abstract: The present disclosure, in some embodiments, relates to an image sensor integrated chip. The image sensor integrated chip includes a substrate having a first side and a second side opposing the first side. The substrate has one or more sidewalls defining a trench extending along opposing sides of a pixel region having a first width. An isolation structure including one or more dielectric materials is disposed within the trench. The isolation structure has a second width. An image sensing element and a focal region are disposed within the pixel region. The focal region is configured to receive incident radiation along the second side of the substrate. A ratio of the second width to the first width is in a range of between approximately 0.1 and approximately 0.2, so that the focal region is completely confined between interior sidewall of the isolation structure facing the image sensing element.Type: ApplicationFiled: June 5, 2024Publication date: October 3, 2024Inventors: Cheng Yu Huang, Wei-Chieh Chiang, Keng-Yu Chou, Tzu-Hsuan Hsu
-
Patent number: 12100720Abstract: A method for forming an image sensor package is provided. An image sensor chip is formed over a package substrate. A protection layer is formed overlying the image sensor chip. The protection layer has a planar top surface and a bottom surface lining and contacting structures under the protection layer. An opening is formed into the protection layer and spaced around a periphery of the image sensor chip. A light shielding material is filled in the opening to form an on-wafer shield structure having a sidewall directly contact the protection layer.Type: GrantFiled: July 27, 2023Date of Patent: September 24, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wen-Hau Wu, Chun-Hao Chuang, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Cheng Yu Huang
-
Publication number: 20240311638Abstract: A method of predicting the efficacy of natural killer cells, including: generating a plurality of training data corresponding to a plurality of donors based on a characteristic factor and a corresponding killing result against the target cancer cells of a plurality of cultured natural killer cells from the donors; obtaining a trained neural network model by inputting the plurality of training data into a neural network model; inputting a to-be-tested input vector corresponding to at least one characteristic factor of a to-be-tested natural killer cell into the trained neural network model to obtain an outputted result vector of the trained neural network model, wherein the result vector indicates a predicted killing result corresponding to the target cancer cell after applying the to-be-tested natural killer cell; and determining a quality of the to-be-tested natural killer cell based on the predicted killing result.Type: ApplicationFiled: December 28, 2023Publication date: September 19, 2024Applicant: Industrial Technology Research InstituteInventors: Nien-Tzu Chou, Yu-Yu Lin, Ching-Fang Lu, Jian-Hao Li, Ting-Hsuan Chen, Cheng-Tai Chen
-
Patent number: 12087801Abstract: A method includes performing an anisotropic etching on a semiconductor substrate to form a trench. The trench has vertical sidewalls and a rounded bottom connected to the vertical sidewalls. A damage removal step is performed to remove a surface layer of the semiconductor substrate, with the surface layer exposed to the trench. The rounded bottom of the trench is etched to form a slant straight bottom surface. The trench is filled to form a trench isolation region in the trench.Type: GrantFiled: January 3, 2022Date of Patent: September 10, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Cheng-Hsien Chou, Chih-Yu Lai, Shih Pei Chou, Yen-Ting Chiang, Hsiao-Hui Tseng, Min-Ying Tsai
-
Patent number: 12062678Abstract: The present disclosure, in some embodiments, relates to an image sensor integrated chip. The image sensor integrated chip includes a substrate having a first side and a second side opposing the first side. The substrate has one or more sidewalls defining a trench extending along opposing sides of a pixel region having a first width. An isolation structure including one or more dielectric materials is disposed within the trench. The isolation structure has a second width. An image sensing element and a focal region are disposed within the pixel region. The focal region is configured to receive incident radiation along the second side of the substrate. A ratio of the second width to the first width is in a range of between approximately 0.1 and approximately 0.2, so that the focal region is completely confined between interior sidewall of the isolation structure facing the image sensing element.Type: GrantFiled: July 12, 2021Date of Patent: August 13, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Cheng Yu Huang, Wei-Chieh Chiang, Keng-Yu Chou, Tzu-Hsuan Hsu
-
Publication number: 20240243156Abstract: A process of forming a back side deep trench isolation structure for an image sensing device includes etching first trenches in the back side of a semiconductor substrate, lining the first trenches with dielectric, depositing passivation layers over and within the first trenches, and etching second trenches through the passivation layers into the first trenches, and filling the second trenches to form a substrate-embedded metal grid. Optionally, the bottoms of the first trenches are filled by depositing and etching a lower fill material prior to depositing the passivation layers. The method prevents the passivation layers from pinching off in a way that causes voids within the first trenches. The result is better optical performance such as increased quantum efficiency and reduced crosstalk.Type: ApplicationFiled: January 17, 2023Publication date: July 18, 2024Inventors: Tsung Hsien Tsai, Cheng Yu Huang, Jen-Cheng Liu, Keng-Yu Chou, Ming-En Chen, Shyh-Fann Ting
-
Publication number: 20220163476Abstract: The present disclosure provides a biochemical test chip, including an insulating substrate, an electrode unit, a first insulating septum, a reactive layer and a second insulating septum. The electrode unit is located on the insulating substrate. The electrode unit includes a working electrode and a counter electrode. A current density of the counter electrode is greater than a current density of the working electrode. The first insulating septum is located on the electrode unit. The first insulating septum has an opening, which at least partially exposes the electrode unit. The reactive layer is located in the opening and is electrically connected to the electrode unit. The second insulating septum is located on the first insulating septum.Type: ApplicationFiled: June 4, 2021Publication date: May 26, 2022Inventors: Chen-Yu YANG, Cheng-Yu CHOU
-
Publication number: 20220161256Abstract: The present disclosure provides a biochemical test chip, including an electrode unit and a protective layer. The protective layer is electrically connected to the electrode unit. The protective layer is configured to oxidize the electrode unit after the electrode unit receives an electron or reduce the electrode unit after the electrode unit loses an electron. There is a potential difference (Ecell0) between the protecting layer and the electrode unit.Type: ApplicationFiled: September 28, 2021Publication date: May 26, 2022Inventors: Cheng-Yu CHOU, Chen-Yu YANG
-
Patent number: 9387519Abstract: A dewaxing device includes a dewaxing system which includes a rinsing device and a storage device connected with the rinsing device via a circulation pipe, and a recycling system which includes a containing trough connected with the storage device and a recycling trough connected between the containing trough and the storage device. The recycling system further includes a rotating device, a condensing unit and a heating unit which cooperate to treat mixed solution with wax into pure chemical solvent in the containing trough. The rotating device is rotatably mounted above the containing trough with the bottom half thereof being dived into the mixed solution. The condensing unit and the heating unit are disposed at two opposite sides of the top half of the rotating device. The rotating device is rotated towards the condensing unit.Type: GrantFiled: August 13, 2013Date of Patent: July 12, 2016Assignee: CHENG UEI PRECISION INDUSTRY CO., LTD.Inventors: Che Wei Hsu, Cheng Yu Chou, Cheng An Chiang, Chih Wei Cheng
-
Patent number: 9377163Abstract: A method of manufacturing a hydrogen storage device includes the steps: (1) mix metal powder, backbone binder and wetting agent to make a canister shell feedstock; (2) mix metal powder, salts, backbone binder and wetting agent to make a porous structure feedstock; (3) feed the canister shell feedstock in an injection molding machine to form a green part of canister shell; (4) feed the porous structure feedstock in the green part of canister shell to form a green part of porous structure integral with the green part of canister shell by injection molding; (5) dissolve the salts out of the green part of porous structure to form pores; (6) remove the wetting agent from the green parts of canister shell and porous structure; (7) remove the backbone binder from the green parts of canister shell and porous structure to form the hydrogen storage device.Type: GrantFiled: May 10, 2013Date of Patent: June 28, 2016Assignee: CHENG UEI PRECISION INDUSTRY CO., LTD.Inventors: Cheng Yu Chou, Che Wei Hsu, Chih Wei Cheng
-
Publication number: 20150047682Abstract: A dewaxing device and a method of recycling chemical solvent used by the dewaxing device are shown. The dewaxing device includes a dewaxing system and a recycling system. The dewaxing system includes a rinsing device and a storage device connected with the rinsing device via a circulation pipe. The recycling system includes a cooling equipment connected with the storage device for cooling mixed solution with wax from the storage device to precipitate wax out of the mixed solution, a filter equipment connected with the cooling equipment for filtering out the precipitated wax, and a recycling trough connected between the filter equipment and the storage device for containing the filtered solution passing through the filter equipment and further conveying the filtered solution back into the storage device to be reused.Type: ApplicationFiled: August 19, 2013Publication date: February 19, 2015Applicant: Cheng Uei Precision Industry Co., Ltd.Inventors: CHENG YU CHOU, CHI-JU SU, CHENG AN CHIANG, CHIH WEI CHENG
-
Publication number: 20150047681Abstract: A dewaxing device includes a dewaxing system which includes a rinsing device and a storage device connected with the rinsing device via a circulation pipe, and a recycling system which includes a containing trough connected with the storage device and a recycling trough connected between the containing trough and the storage device. The recycling system further includes a rotating device, a condensing unit and a heating unit which cooperate to treat mixed solution with wax into pure chemical solvent in the containing trough. The rotating device is rotatably mounted above the containing trough with the bottom half thereof being dived into the mixed solution. The condensing unit and the heating unit are disposed at two opposite sides of the top half of the rotating device. The rotating device is rotated towards the condensing unit.Type: ApplicationFiled: August 13, 2013Publication date: February 19, 2015Applicant: Cheng Uei Precision Industry Co., Ltd.Inventors: CHE WEI HSU, CHENG YU CHOU, CHENG AN CHIANG, CHIH WEI CHENG
-
Publication number: 20150034129Abstract: A dewaxing device and a method of dewaxing using the dewaxing device are shown. The dewaxing device includes a dewaxing system including a rinsing device and a storage device, and a recycling system connected with the storage device. The storage device includes a first solvent trough and a second solvent trough of which each is connected with the rinsing device and is equipped with a heating equipment. When the first solvent trough is connected with the rinsing device, the second solvent trough is disconnected with the rinsing device; when the second solvent trough is connected with the rinsing device, the first solvent trough is disconnected with the rinsing device. So, the dewaxing device can provide two dewaxing processes and effectively reduce recycling frequency because the recycling process is done after soluble wax quantity of bromopropane solvent reaches the maximum value 16%. The production cost is accordingly reduced.Type: ApplicationFiled: August 5, 2013Publication date: February 5, 2015Applicant: Cheng Uei Precision Industry Co., Ltd.Inventors: CHENG YU CHOU, CHEN LUEN TSAI, CHE WEI HSU, CHIH WEI CHENG
-
Publication number: 20140334961Abstract: A method of manufacturing a hydrogen storage device includes the steps: (1) mix metal powder, backbone binder and wetting agent to make a canister shell feedstock; (2) mix metal powder, salts, backbone binder and wetting agent to make a porous structure feedstock; (3) feed the canister shell feedstock in an injection molding machine to form a green part of canister shell; (4) feed the porous structure feedstock in the green part of canister shell to form a. green part of porous structure integral with the green part of canister shell by injection molding; (5) dissolve the salts out of the green part of porous structure to form pores; (6) remove the wetting agent from the green parts of canister shell and porous structure; (7) remove the backbone binder from the green parts of canister shell and porous structure to form the hydrogen storage device.Type: ApplicationFiled: May 10, 2013Publication date: November 13, 2014Applicant: Cheng Uei Precision Industry Co., Ltd.Inventors: Cheng Yu CHOU, Che Wei HSU, Chih Wei CHENG
-
Publication number: 20140190354Abstract: A debinder trap for treating binder gas thermal-cracked in sintering process of metal injection molding includes a barrel body defining an inflow hole, a drain hole, an inlet and an outlet, baffles disposed in the barrel body to define a guide channel of which entrance and exit are communicated with the inlet and the outlet, and a temperature controller containing liquid material therein and connected with the barrel body via an inflow pipe and a drain pipe connecting in the inflow hole and the drain hole. An accommodating channel passes through the inside of the barrel body and extends from the inflow hole to the drain hole. The temperature controller conveys the liquid material in the accommodating channel to regulate internal environment of the barrel body into low-temperature to condense the binder gas through the guide channel into solid, and high-temperature to make the solid binder molten to sink.Type: ApplicationFiled: January 4, 2013Publication date: July 10, 2014Applicant: CHENG UEI PRECISION INDUSTRY CO., LTD.Inventors: Cheng Yu Chou, Che Wei Hsu, Cheng An Chiang, Chih Wei Cheng