Patents by Inventor Chengcheng Tang

Chengcheng Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125969
    Abstract: The present disclosure provides a method for experimentally determining a critical sand-carrying gas velocity of a shale gas well. The method includes: collecting well structure and production data, calculating parameter ranges of a gas flow velocity and a liquid flow velocity; carrying out a physical simulation experiment of sand carrying in the shale gas well to obtain the sand holding capacity of the wellbore under different experimental conditions, and calculating a sand holding rate; by observing a change curve of the sand holding rate of the wellbore vs. the gas flow velocity, defining a turning point, and sensitively analyzing the influence of other experimental variables on the turning point, to calculate the critical sand-carrying production of the shale gas well under different conditions. Therefore, this calculation method is simple and applicable, and provides a theoretical basis for the optimization design of water drainage and gas production process.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 18, 2024
    Applicant: Southwest Petroleum University
    Inventors: Yonghui Liu, Jinhong Jiang, Chengcheng Luo, Ning Wu, Xuanzhi Zheng, Xinke Tang, Xin Li, Zhengyang Liu, Boren Yang, Tianjian Liu
  • Publication number: 20240120635
    Abstract: Active antenna units and/or base station antennas are provided that include a reflector body with heat dissipation structures that can be directly exposed to environmental conditions during use. The heat dissipation structures have frequency selective surfaces and can be formed of sheet metal or provided as separate extruded or die cast members that can be coupled to the reflector body.
    Type: Application
    Filed: October 5, 2023
    Publication date: April 11, 2024
    Inventors: Chengcheng Tang, Joy Huang, Bo Wu, Samantha Merta, Haifeng Li, XiaoHua Hou
  • Patent number: 11955716
    Abstract: A cross-dipole radiating element includes first and second polymer-based coplanar waveguide feed stalks, and first and second pairs of polymer-based radiating arms, which are supported by and electrically coupled to the first and second coplanar waveguide feed stalks. These polymer-based feed stalks and radiating arms are configured as a unitary polymer substrate, which is selectively metallized to define a cross-dipole radiating element. The first and second feed stalks may be configured as finite grounded coplanar waveguide (GCPW) feed stalks, which are spaced-apart from each other on an underlying polymer base. The unitary polymer substrate may include the polymer base.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: April 9, 2024
    Assignee: CommScope Technologies LLC
    Inventors: Chengcheng Tang, Xiangyang Ai, Peter J. Bisiules
  • Publication number: 20240072438
    Abstract: Antennas are provided. An antenna includes an antenna array having a plurality of sub-arrays that each include a plurality of radiating elements. Moreover, the antenna includes a multi-stage beamforming network having a first stage including a plurality of first Butler matrices and a second stage including a plurality of second Butler matrices that are coupled between the first Butler matrices and the sub-arrays. The first Butler matrices are each coupled to each of the second Butler matrices. The second Butler matrices are coupled to the sub-arrays, respectively, without any cables between the second Butler matrices and the sub-arrays.
    Type: Application
    Filed: August 17, 2023
    Publication date: February 29, 2024
    Inventors: Xiangyang Ai, Chengcheng Tang, Martin L. Zimmerman, Kamalakar Yeddula, Kumara Swamy Kasani, Sharal Dhanapal
  • Patent number: 11909102
    Abstract: Base station antennas comprise a multi-column, multiband beamforming array that includes a first sub-array of first radiating elements, a second sub-array of second radiating elements and a third sub-array of third radiating elements. The first radiating elements are configured to operate in a first frequency band, the second radiating elements are configured to operate in a second frequency band, and the third radiating elements are configured to operate in both the first frequency band and the second frequency band. Each of the first through third sub-arrays has the same number of columns. A width of the first sub-array exceeds a width of the third sub-array, and a width of the third sub-array exceeds a width of the second sub-array.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: February 20, 2024
    Assignee: CommScope Technologies LLC
    Inventors: Chengcheng Tang, Rongrong Zhang, HongHui Chen
  • Patent number: 11855352
    Abstract: Radiating elements include a first and second dipole arms that extend along a first axis and that are configured to transmit RF signals in a first frequency band. The first dipole arm is configured to be more transparent to RF signals in a second frequency band than it is to RF signals in a third frequency band, and the second dipole arm is configured to be more transparent to RF signals in the third frequency band than it is to RF signals in the second frequency band. Related base station antennas are also provided.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: December 26, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Chengcheng Tang, Gangyi Deng, Peter J. Bisiules, Yunzhe Li
  • Patent number: 11777229
    Abstract: Radiating elements include a first dipole radiator that extends along a first axis, the first dipole radiator including a first pair of dipole arms that are configured to resonate at a first frequency and a second pair of dipole arms that are configured to resonate at a second frequency that is different than the first frequency. Each dipole arm in the first pair of dipole arms comprises a plurality of widened sections that are connected by intervening narrowed sections.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: October 3, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Yunzhe Li, Gangyi Deng, Peter J. Bisiules, YueMin Li, Mohammad Vatankhah Varnoosfaderani, Chengcheng Tang
  • Publication number: 20230170944
    Abstract: A sector-splitting base station antenna includes a plurality of RF ports, a plurality of columns of radiating elements, a first beamforming network that is coupled between a first subset of the RF ports and a first antenna array that comprises a first subset of the columns of radiating elements, and a second beamforming network that is coupled between a second subset of the RF ports and a second antenna array that comprises a second subset of the columns of radiating elements. The first beamforming network and the first antenna array are configured to generate a first plurality of antenna beams that provide coverage to a first side of a sector of a cell of a cellular communications system but not to a second side of the sector, and the second beamforming network and the second antenna array are configured to generate a second plurality of antenna beams that provide coverage to the second side of the sector but not to the first side of the sector.
    Type: Application
    Filed: November 30, 2022
    Publication date: June 1, 2023
    Inventors: Xiangyang Ai, Chengcheng Tang, Peter J. Bisiules, Kumara Swamy Kasani
  • Publication number: 20230155699
    Abstract: A method of calibrating an active antenna module that includes a radio and an active antenna unit is provide di which information is read from a data storage device that is mounted on the active antenna unit. The radio is connected to the active antenna unit. The radio is calibrated using the information read from the data storage device.
    Type: Application
    Filed: November 15, 2022
    Publication date: May 18, 2023
    Inventors: Chengcheng Tang, Sammit A. Patel, XiaoHua Hou
  • Publication number: 20230120414
    Abstract: Radiating elements include a first and second dipole arms that extend along a first axis and that are configured to transmit RF signals in a first frequency band. The first dipole arm is configured to be more transparent to RF signals in a second frequency band than it is to RF signals in a third frequency band, and the second dipole arm is configured to be more transparent to RF signals in the third frequency band than it is to RF signals in the second frequency band. Related base station antennas are also provided.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Chengcheng Tang, Gangyi Deng, Peter J. Bisiules, Yunzhe Li
  • Publication number: 20230110935
    Abstract: A board-to-board connector assembly includes: a coaxial cable portion including an inner conductor, a dielectric layer circumferentially overlying the inner conductor, and an outer conductor circumferentially overlying the dielectric layer; a printed circuit board (PCB); a first connector mounted to the PCB, the first connector including a first inner contact in electrical contact with the inner conductor, and a first outer contact in electrical contact with the outer conductor; and a second connector having a second inner contact in electrical contact with the inner conductor and a second outer contact in electrical contact with the outer conductor. At least one of the first outer contact and the second outer contact is in electrical contact with the outer conductor via a conductive gasket.
    Type: Application
    Filed: August 29, 2022
    Publication date: April 13, 2023
    Inventors: MuLan Huang, Jien Zheng, ZhaoHui Liu, Chengcheng Tang
  • Publication number: 20230110891
    Abstract: An antenna assembly includes a backplane and a polymer substrate mounted over the backplane to define an air gap there-between. The polymer substrate supports radiating elements comprising a polymer-based waveguide feed stalk and a polymer-based pair of radiating arms supported by and electrically coupled to the waveguide feed stalk. A conductive layer is formed on the polymer substrate such that the conductive layer faces the backplane. A phase shifter including a movable element such as a dielectric member r trombone member may be positioned in the air gap for adjusting the phase of a radiating element or a phase shifter assembly may be positioned to the back side of the back plane.
    Type: Application
    Filed: April 6, 2021
    Publication date: April 13, 2023
    Inventors: Chengcheng Tang, Peter J. Bisiules
  • Publication number: 20230053102
    Abstract: An antenna includes a radiating element on a forward-facing surface of an underlying reflector, and a multi-element planar broadband lens in front of and within a radio frequency (RF) transmission path of the radiating element. The broadband lens includes first lens elements having first RF characteristics and second lens elements having second RF characteristics, which are different from the first RF characteristics. The first lens elements are arranged as a plurality of the first lens elements, which are encircled by an array of the second lens elements. Each of the first lens elements includes a first LC circuit, and each of the second LC circuits includes a second LC circuit with a smaller inductance relative to the first LC circuit.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 16, 2023
    Inventors: Haifeng Li, Peter J. Bisiules, Rui An, Chengcheng Tang
  • Patent number: 11575217
    Abstract: Base station antennas include a main module that has a first backplane that includes a first reflector. A vertically-extending array of first radiating elements is mounted to extend forwardly from the first reflector, and at least one first RF port is coupled to the vertically-extending array of first radiating elements. These antennas further include a sub-module that is attached to the first backplane. The sub-module includes a second backplane that has a second reflector that is separate from the first reflector. A vertically-extending array of second radiating elements is mounted to extend forwardly from the second reflector and is transversely spaced-apart from the vertically-extending array of first radiating elements. A plurality of second RF ports are coupled to the vertically-extending array of second radiating elements. The vertically-extending array of first radiating elements and the vertically-extending array of second radiating elements are configured to serve a common sector of a base station.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: February 7, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Sammit Patel, Amit Kaistha, Gangyi Deng, XiaoHua Hou, Chengcheng Tang, Joy Huang
  • Patent number: 11563278
    Abstract: Radiating elements include a first and second dipole arms that extend along a first axis and that are configured to transmit RF signals in a first frequency band. The first dipole arm is configured to be more transparent to RF signals in a second frequency band than it is to RF signals in a third frequency band, and the second dipole arm is configured to be more transparent to RF signals in the third frequency band than it is to RF signals in the second frequency band. Related base station antennas are also provided.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: January 24, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Chengcheng Tang, Gangyi Deng, Peter J. Bisiules, Yunzhe Li
  • Patent number: 11552408
    Abstract: A base station antenna (BSA) includes a reflector having a main reflector surface thereon, which extends between first and second sidewalls thereof. First and second choke-within-a-choke assemblies are provided on first and second sides of the reflector, respectively. The first choke-within-a-choke assembly includes: a first relatively low-band choke defined on one side thereof by the first sidewall of the reflector, and a first relatively high-band choke contacting on two sides thereof a rear surface of the reflector and an inner surface of the first sidewall. The second choke-within-a-choke assembly includes: a second relatively low-band choke defined on one side thereof by the second sidewall of the reflector, and a second relatively high-band choke contacting on two sides thereof the rear surface of the reflector and an inner surface of the second sidewall.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: January 10, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Chengcheng Tang, Xiangyang Ai, Gangyi Deng, Amit Kaistha, Vijay Srinivasan, Yateen Sutar
  • Patent number: 11515622
    Abstract: Base station antennas are provided herein. A base station antenna includes a multiband beam-former array having a plurality of vertical columns of radiating elements. In some embodiments, at least two of the vertical columns are commonly fed for a first frequency band of the multiband beam-former array that is lower than a second frequency band of the multiband beam-former array. Related methods of operation are also provided.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: November 29, 2022
    Assignee: CommScope Technologies LLC
    Inventors: XiaoHua Hou, Chengcheng Tang, Xiangyang Ai, Peter J. Bisiules, Mohammad Vatankhah Varnoosfaderani
  • Publication number: 20220263248
    Abstract: A cross-dipole radiating element includes first and second polymer-based coplanar waveguide feed stalks, and first and second pairs of polymer-based radiating arms, which are supported by and electrically coupled to the first and second coplanar waveguide feed stalks. These polymer-based feed stalks and radiating arms are configured as a unitary polymer substrate, which is selectively metallized to define a cross-dipole radiating element. The first and second feed stalks may be configured as finite grounded coplanar waveguide (GCPW) feed stalks, which are spaced-apart from each other on an underlying polymer base. The unitary polymer substrate may include the polymer base.
    Type: Application
    Filed: October 8, 2020
    Publication date: August 18, 2022
    Inventors: Chengcheng Tang, Xiangyang Ai, Peter J. Bisiules
  • Publication number: 20220200151
    Abstract: An antenna includes a cross-polarized feed signal network configured to convert first and second radio frequency (RF) input feed signals to first and second pairs of cross-polarized feed signals at respective first and second pairs of feed signal output ports. A feed signal pedestal is provided, which is electrically coupled to the first and second pairs of feed signal output ports, and a patch radiating element is provided, which is electrically coupled by the feed signal pedestal to the first and second pairs of feed signal output ports. This patch radiating element may be capacitively coupled to first and second pairs of feed signal lines on the feed signal pedestal, which are electrically connected to the first and second pairs of feed signal output ports.
    Type: Application
    Filed: May 15, 2020
    Publication date: June 23, 2022
    Inventors: Huan WANG, Vadim ZLOTNIKOV, Michael BROBSTON, Chengcheng TANG, Samantha L. MERTA, Peter J. BISIULES
  • Publication number: 20220166129
    Abstract: Base station antennas comprise a multi-column, multiband beamforming array that includes a first sub-array of first radiating elements, a second sub-array of second radiating elements and a third sub-array of third radiating elements. The first radiating elements are configured to operate in a first frequency band, the second radiating elements are configured to operate in a second frequency band, and the third radiating elements are configured to operate in both the first frequency band and the second frequency band. Each of the first through third sub-arrays has the same number of columns. A width of the first sub-array exceeds a width of the third sub-array, and a width of the third sub-array exceeds a width of the second sub-array.
    Type: Application
    Filed: November 12, 2021
    Publication date: May 26, 2022
    Inventors: Chengcheng Tang, Rongrong Zhang, HongHui Chen