Patents by Inventor Cheng-Hua Yang

Cheng-Hua Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958789
    Abstract: A method for determining a consistency coefficient of a power-law cement grout includes: determining a water-cement ratio of the power-law cement grout; according to engineering practice requirements, determining a time required to determine the consistency coefficient of the power-law cement grout; and obtaining the consistency coefficient of the power-law cement grout. The method is accurate and reliable, requires less calculation, etc.; and has very high practical value and popularization value in environmental protection and ecological restoration.
    Type: Grant
    Filed: December 12, 2023
    Date of Patent: April 16, 2024
    Assignee: KUNMING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Zhi-quan Yang, Jun-fan Xiong, Ying-yan Zhu, Yi Yang, Yong-shun Han, Muhammad Asif Khan, Jian-bin Xie, Tian-bing Xiang, Bi-hua Zhang, Han-hua Xu, Jie Zhang, Shen-zhang Liu, Qi-jun Jia, Cheng-yin Ye, Gang Li
  • Publication number: 20230268437
    Abstract: A power device includes a substrate, an ion well in the substrate, a body region in the ion well, a source doped region in the body region, a drain doped region in the ion well, and gates on the substrate between the source doped region and the drain doped region. The gates include a first gate adjacent to the source doped region, a second gate adjacent to the drain doped region, and a stacked gate structure between the first gate and the second gate.
    Type: Application
    Filed: March 24, 2022
    Publication date: August 24, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chien Chang, Shen-De Wang, Cheng-Hua Yang, LINGGANG FANG, JIANJUN YANG, Wei Ta
  • Publication number: 20230215946
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, a first oxide layer, a field plate, and a second oxide layer. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure respectively. The first oxide layer includes a first portion disposed between the gate structure and the semiconductor substrate and a second portion disposed between the gate structure and the drain region. The field plate is partly disposed above the gate structure and partly disposed above the second portion of the first oxide layer. The second oxide layer includes a first portion disposed between the field plate and the gate structure and a second portion disposed between the field plate and the second portion of the first oxide layer.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Cheng-Hua Yang, Chih-Chien Chang, Shen-De Wang
  • Patent number: 11631766
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, a first oxide layer, a field plate, and a second oxide layer. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure respectively. The first oxide layer includes a first portion disposed between the gate structure and the semiconductor substrate and a second portion disposed between the gate structure and the drain region. The field plate is partly disposed above the gate structure and partly disposed above the second portion of the first oxide layer. The second oxide layer includes a first portion disposed between the field plate and the gate structure and a second portion disposed between the field plate and the second portion of the first oxide layer.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: April 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Cheng-Hua Yang, Chih-Chien Chang, Shen-De Wang
  • Publication number: 20220310839
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, a first oxide layer, a field plate, and a second oxide layer. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure respectively. The first oxide layer includes a first portion disposed between the gate structure and the semiconductor substrate and a second portion disposed between the gate structure and the drain region. The field plate is partly disposed above the gate structure and partly disposed above the second portion of the first oxide layer. The second oxide layer includes a first portion disposed between the field plate and the gate structure and a second portion disposed between the field plate and the second portion of the first oxide layer.
    Type: Application
    Filed: April 12, 2021
    Publication date: September 29, 2022
    Inventors: Cheng-Hua Yang, Chih-Chien Chang, Shen-De Wang
  • Patent number: 10692720
    Abstract: Embodiments of the present disclosure may be used for patterning a layer in a 5 nm node or beyond fabrication to achieve an end-to-end distance below 35 nm. Compared to the state of the art technology, embodiments of the present disclosure reduce cycle time and cost of production from three lithographic processes and four etching processes to one lithographic process and three etch processes.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: June 23, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Tsai-Chun Li, Huan-Just Lin, Huang-Ming Chen, Yang-Cheng Wu, Cheng-Hua Yang
  • Patent number: 10651183
    Abstract: A manufacturing method of a semiconductor device includes: providing a substrate having memory and high voltage regions; sequentially forming a floating gate layer and a hard mask layer on the substrate; patterning the hard mask layer to form a first opening exposing a portion of the floating gate layer in the range of the memory region; patterning the hard mask layer and the floating gate layer to form a second opening overlapped with the high voltage region; performing a first thermal growth process to simultaneously form a first oxide structure on the portion of the floating gate layer exposed by the first opening, and to form a second oxide structure on a portion of the substrate overlapped with the second opening; removing the hard mask layer; and patterning the floating gate layer by using the first oxide structure as a mask.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: May 12, 2020
    Assignee: United Microelectronics Corp.
    Inventors: Jianjun Yang, Cheng-Hua Yang, Fan-Chi Meng, Chih-Chien Chang, Shen-De Wang
  • Publication number: 20200083046
    Abstract: Embodiments of the present disclosure may be used for patterning a layer in a 5 nm node or beyond fabrication to achieve an end-to-end distance below 35 nm. Compared to the state of the art technology, embodiments of the present disclosure reduce cycle time and cost of production from three lithographic processes and four etching processes to one lithographic process and three etch processes.
    Type: Application
    Filed: November 11, 2019
    Publication date: March 12, 2020
    Inventors: Yu-Lien Huang, Tsai-Chun Li, Huan-Just Lin, Huang-Ming Chen, Yang-Cheng Wu, Cheng-Hua Yang
  • Patent number: 10504729
    Abstract: Embodiments of the present disclosure may be used for patterning a layer in a 5 nm node or beyond fabrication to achieve an end-to-end distance below 35 nm. Compared to the state of the art technology, embodiments of the present disclosure reduce cycle time and cost of production from three lithographic processes and four etching processes to one lithographic process and three etch processes.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Tsai-Chun Li, Huan-Just Lin, Huang-Ming Chen, Yang-Cheng Wu, Cheng-Hua Yang
  • Publication number: 20190259613
    Abstract: Embodiments of the present disclosure may be used for patterning a layer in a 5 nm node or beyond fabrication to achieve an end-to-end distance below 35 nm. Compared to the state of the art technology, embodiments of the present disclosure reduce cycle time and cost of production from three lithographic processes and four etching processes to one lithographic process and three etch processes.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: Yu-Lien Huang, Tsai-Chun Li, Huan-Just Lin, Huang-Ming Chen, Yang-Cheng Wu, Cheng-Hua Yang
  • Patent number: 10312089
    Abstract: Embodiments of the present disclosure may be used for patterning a layer in a 5 nm node or beyond fabrication to achieve an end-to-end distance below 35 nm. Compared to the state of the art technology, embodiments of the present disclosure reduce cycle time and cost of production from three lithographic processes and four etching processes to one lithographic process and three etch processes.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: June 4, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Tsai-Chun Li, Huan-Just Lin, Huang-Ming Chen, Yang-Cheng Wu, Cheng-Hua Yang
  • Publication number: 20190164759
    Abstract: Embodiments of the present disclosure may be used for patterning a layer in a 5 nm node or beyond fabrication to achieve an end-to-end distance below 35 nm. Compared to the state of the art technology, embodiments of the present disclosure reduce cycle time and cost of production from three lithographic processes and four etching processes to one lithographic process and three etch processes.
    Type: Application
    Filed: March 16, 2018
    Publication date: May 30, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien HUANG, Tsai-Chun LI, Huan-Just LIN, Huang-Ming CHEN, Yang-Cheng WU, Cheng-Hua YANG
  • Patent number: 10276652
    Abstract: A schottky diode includes a schottky junction, an ohmic junction, a first isolation structure and a plurality of doped regions. The schottky junction includes a first well in a substrate and a first electrode contacting the first well. The ohmic junction includes a junction region in the first well and a second electrode contacting the junction region. The first isolation structure is disposed in the substrate and separates the schottky junction from the ohmic junction. The doped regions are located in the first well and under the schottky junction, wherein the doped regions separating from each other constitute a top-view profile of concentric circles.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: April 30, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Cheng-Hua Yang, Ke-Feng Lin, Ming-Tsung Lee, Shih-Teng Huang, Chih-Chung Wang, Chiu-Te Lee, Shu-Wen Lin
  • Patent number: 10050149
    Abstract: A method of forming a semiconductor device includes forming a source/drain region and spacers on a substrate. The method further includes forming an etch stop layer on the spacers and the source/drain region and forming a gate structure between the spacers. The method further includes etching back the gate structure, etching back the spacers and the etch back layer, and forming a gate capping structure on the etched back gate structure, spacers, and etch stop layer.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Tsai-Chun Li, Ching-Feng Fu, Ming-Huan Tsai, D. T. Lee, Cheng-Hua Yang, Yi-Chen Lo
  • Patent number: 9391197
    Abstract: A semiconductor device includes a substrate; a deep well region disposed in the substrate; an element region disposed in the substrate and in the deep well region; a drain region disposed in the substrate, in the deep well region, and surrounding the element region; a gate structure disposed on the surface of the substrate, adjacent to the deep well region, and surrounding the drain region; a well region disposed in the substrate, in the deep well region, and surrounding the gate structure; a source region disposed in the substrate, in the well region, and surrounding the gate structure; a body contact region disposed separately from the source region in the well region and surrounding the source region; and an annular doped region disposed separately from the deep well region in the substrate and surrounding the deep well region.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: July 12, 2016
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Shih Chieh Pu, Ming-Tsung Lee, Cheng-Hua Yang, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Patent number: 9224859
    Abstract: A high voltage metal-oxide-semiconductor (HV MOS) device includes a substrate including a first conductivity type, a gate positioned on the substrate, a drain region formed in the substrate, the drain region including a second conductivity type, and a source region formed in the substrate, where the source region includes at least one first part and at least one second part, the first part includes the second conductivity type, the second part includes the first conductivity type, and the first conductivity type and the second conductivity type are complementary.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: December 29, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Chieh Pu, Ming-Tsung Lee, Cheng-Hua Yang, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Patent number: 9105493
    Abstract: A layout pattern of a high voltage metal-oxide-semiconductor transistor device includes a first doped region having a first conductivity type, a second doped region having the first conductivity type, and an non-continuous doped region formed in between the first doped region and the second doped region. The non-continuous doped region further includes a plurality of third doped regions, a plurality of gaps, and a plurality of fourth doped regions. The gaps and the third doped regions s are alternately arranged, and the fourth doped regions are formed in the gaps. The third doped regions include a second conductivity type complementary to the first conductivity type, and the fourth doped regions include the first conductivity type.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: August 11, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Tsung Lee, Cheng-Hua Yang, Wen-Fang Lee, Chih-Chung Wang, Te-Yuan Wu
  • Patent number: 8937352
    Abstract: A layout pattern of an implant layer includes at least a linear region and at least a non-linear region. The linear region includes a plurality of first patterns to accommodate first dopants and the non-linear region includes a plurality of second patterns to accommodate the first dopants. The linear region abuts the non-linear region. Furthermore, a pattern density of the first patterns in the linear region is smaller than a pattern density of the second patterns in the non-linear region.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: January 20, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Ming-Tsung Lee, Cheng-Hua Yang, Wen-Fang Lee, Chih-Chung Wang, Chih-Wei Hsu, Po-Ching Chuang
  • Publication number: 20140159155
    Abstract: A layout pattern of an implant layer includes at least a linear region and at least a non-linear region. The linear region includes a plurality of first patterns to accommodate first dopants and the non-linear region includes a plurality of second patterns to accommodate the first dopants. The linear region abuts the non-linear region. Furthermore, a pattern density of the first patterns in the linear region is smaller than a pattern density of the second patterns in the non-linear region.
    Type: Application
    Filed: February 17, 2014
    Publication date: June 12, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Tsung Lee, Cheng-Hua Yang, Wen-Fang Lee, Chih-Chung Wang, Chih-Wei Hsu, Po-Ching Chuang
  • Patent number: 8692326
    Abstract: A layout pattern of a high voltage metal-oxide-semiconductor transistor device includes a first doped region having a first conductivity type, a second doped region having the first conductivity type, and an non-continuous doped region formed in between the first doped region and the second doped region. The non-continuous doped region includes a plurality of gaps formed therein. The non-continuous doped region further includes a second conductivity type complementary to the first conductivity type.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: April 8, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ming-Tsung Lee, Cheng-Hua Yang, Wen-Fang Lee, Chih-Chung Wang, Chih-Wei Hsu, Po-Ching Chuang