Patents by Inventor Chenguang Diao

Chenguang Diao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10245181
    Abstract: A surgical probe includes a cannula assembly, having a graded index (GRIN) fiber that is configured to receive a multi-spot light beam at a proximal end and to emit the multi-spot light beam at a distal end; an adapter, having a distal end, configured to receive the cannula assembly, with the proximal end of the GRIN fiber, a proximal end, configured to couple to a light guide via a connector and to receive a light delivered by the light guide from a laser source to the adapter, and an interface, configured to couple the light delivered by the light guide to the proximal end of the GRIN fiber; wherein a length of the GRIN fiber is sufficiently long that the interface is outside a patient's eye during a photocoagulation procedure.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 2, 2019
    Assignee: Alcon Research, Ltd.
    Inventors: Chenguang Diao, Ronald T. Smith
  • Publication number: 20180333304
    Abstract: An example laser probe comprises one or more fibers extending from a proximal end of the laser probe to at least near a distal end of the laser probe, where the proximal end of the laser probe is configured to be coupled to a laser source via an adapter interface, and a cannula having a distal end and surrounding the one or more fibers along at least a portion of the laser probe at or near the distal end of the laser probe. The laser probe further comprises one or more lens elements, where each lens element is fused to or formed directly on the distal end of a corresponding one of the one or more fibers. In some embodiments, the laser probe is a multi-fiber, multi-spot laser probe, e.g., comprising four or more fibers and four or more corresponding lens elements.
    Type: Application
    Filed: May 8, 2018
    Publication date: November 22, 2018
    Inventors: Chenguang Diao, Mark Harrison Farley, Alireza Mirsepassi, Kambiz Parto, Dean Richardson, Ronald Smith
  • Publication number: 20180284360
    Abstract: Improved optical fiber coupling reliability is realized by improving structures and materials used at the fiber joint. When ceramic ferrules are used at the fiber joint, the penetration of a UV-cured optical adhesive between the ceramic ferrules and the fiber ends is avoided or prevented, while an anti-reflective coating, an uncured optical adhesive, or a refractive index matching gel may be applied between the ceramic ferrules. When glass ferrules are used at the fiber joint, the UV-cured optical adhesive may be applied and fully cured between the glass ferrules and the fiber ends.
    Type: Application
    Filed: June 1, 2018
    Publication date: October 4, 2018
    Inventors: Chenguang Diao, Alireza Mirsepassi, Michael J. Papac
  • Publication number: 20180243136
    Abstract: An example multi-fiber, multi-spot laser probe comprises a plurality of fibers extending from a proximal end of the laser probe to at least near a distal end of the laser probe, where the proximal end of the laser probe is configured to be coupled to a laser source via an adapter interface, and a cannula having a distal end and surrounding the plurality of fibers along at least a portion of the laser probe at or near the distal end of the laser probe, where a distal end of each of the plurality of fibers is angle-polished so that the distal end of each fiber is angled relative to a longitudinal axis of the cannula and relative to a plane perpendicular to the longitudinal axis of the cannula. Additional embodiments employ lensed fibers, a distal window, ball lens, lens array, or faceted wedge.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 30, 2018
    Inventors: Chenguang Diao, Mark Harrison Farley, Alireza Mirsepassi, Kambiz Parto, Ronald T. Smith
  • Publication number: 20180243137
    Abstract: Multi-fiber laser probes utilize relative motion of fibers and other laser probe elements to preserve small-gauge compatibility while providing for multi-spot beam deliver, or to provide for the selectively delivery of single-spot or multi-spot beam patterns. An example probe includes fibers having distal ends that are movable as a group onto a distal ramp element affixed to a distal end of a cannula, so that the distal ends of the fibers can be moved between a retracted position, in which the distal ends of the fibers are within the cannula or ramp element, and an extended position, in which distal ends of the fibers are guided by grooves or channels of the ramp so as to extend at least partially through external openings in the distal end of the laser probe and so as to be pointed angularly away from a longitudinal axis of the cannula.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 30, 2018
    Inventors: Chenguang Diao, Mark Harrison Farley, Alireza Mirsepassi, Ronald T. Smith
  • Patent number: 10012800
    Abstract: Improved optical fiber coupling reliability is realized by improving structures and materials used at the fiber joint. When ceramic ferrules are used at the fiber joint, the penetration of a UV-cured optical adhesive between the ceramic ferrules and the fiber ends is avoided or prevented, while an anti-reflective coating, an uncured optical adhesive, or a refractive index matching gel may be applied between the ceramic ferrules. When glass ferrules are used at the fiber joint, the UV-cured optical adhesive may be applied and fully cured between the glass ferrules and the fiber ends.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: July 3, 2018
    Assignee: Novartis AG
    Inventors: Chenguang Diao, Alireza Mirsepassi, Michael J. Papac
  • Publication number: 20180133057
    Abstract: In some embodiments, an illuminated microsurgical instrument system includes a microsurgical instrument having a distally projecting tubular member arranged to perform a medical procedure. The tubular member has a distal tip and an outer surface, the outer surface having a flat surface formed therein. The instrument includes a sheath member surrounding a portion of the tubular member and extending toward the distal tip of the tubular member and an optical fiber extending along a length of the flat surface between the tubular member and the sheath member. The instrument may include an opening such as a slot in the distal end of the sheath member to direct exiting air away from the tip of the optical fiber. The instrument may further include a slack chamber, collar structure, and fiber guard member to support and guide the optical fiber to the distal tip.
    Type: Application
    Filed: November 16, 2017
    Publication date: May 17, 2018
    Inventors: Chenguang Diao, Mark Harrison Farley, Brian William McDonell, Alireza Mirsepassi, Michael J. Papac, Kambiz Parto, Ronald T. Smith, Barry L. Wheatley
  • Publication number: 20180132963
    Abstract: Provided herein is an illuminated microsurgical instrument system and an illuminated microsurgical instrument. In one implementation, the system includes a microsurgical instrument having a distally projecting tubular member arranged to perform a medical procedure at an interventional site. The tubular member has a distal tip and an outer surface, the outer surface having a flat surface formed therein. The instrument includes a sheath member surrounding a portion of the tubular member and extending toward the distal tip of the tubular member and an optical fiber extending along a length of the flat surface between the tubular member and the sheath member. The instrument may further include a slack chamber, collar structure, and fiber guard member to support and guide the optical fiber to the distal tip.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 17, 2018
    Inventors: Chenguang Diao, Mark Harrison Farley, Brian William McDonell, Alireza Mirsepassi, Michael J. Papac, Kambiz Parto, Ronald T. Smith, Barry L. Wheatley
  • Patent number: 9956053
    Abstract: An illuminated microsurgical surgical instrument that allows for illumination of the interior of a body cavity during a surgical procedure is provided herein. The surgical instrument may include an elongate tubular member having a distal end for insertion through tissue, the elongate tubular member having an inner diameter, an outer diameter, and a wall thickness. A longitudinal slot extending from the distal end of the elongate tubular member is formed in the elongate tubular member. The surgical instrument further may include an optical fiber extending within the longitudinal slot toward the distal end of the elongate tubular member. The optical fiber may be affixed within the longitudinal slot by an adhesive. The optical fiber may be positioned such that a distal tip thereof is protected from damage by a distal edge of the elongate tubular member during insertion of the instrument into the body cavity.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: May 1, 2018
    Assignee: NOVARTIS AG
    Inventors: Chenguang Diao, Alireza Mirsepassi, Ronald T. Smith, Michael J. Papac
  • Publication number: 20180017739
    Abstract: Improved optical fiber coupling reliability is realized by improving structures and materials used at the fiber joint. When ceramic ferrules are used at the fiber joint, the penetration of a UV-cured optical adhesive between the ceramic ferrules and the fiber ends is avoided or prevented, while an anti-reflective coating, an uncured optical adhesive, or a refractive index matching gel may be applied between the ceramic ferrules. When glass ferrules are used at the fiber joint, the UV-cured optical adhesive may be applied and fully cured between the glass ferrules and the fiber ends.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Chenguang Diao, Alireza Mirsepassi, Michael J. Papac
  • Publication number: 20170252121
    Abstract: An illuminated microsurgical surgical instrument that allows for illumination of the interior of a body cavity during a surgical procedure is provided herein. The surgical instrument may include an elongate tubular member having a distal end for insertion through tissue, the elongate tubular member having an inner diameter, an outer diameter, and a wall thickness. A longitudinal slot extending from the distal end of the elongate tubular member is formed in the elongate tubular member. The surgical instrument further may include an optical fiber extending within the longitudinal slot toward the distal end of the elongate tubular member. The optical fiber may be affixed within the longitudinal slot by an adhesive. The optical fiber may be positioned such that a distal tip thereof is protected from damage by a distal edge of the elongate tubular member during insertion of the instrument into the body cavity.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 7, 2017
    Inventors: Chenguang Diao, Alireza Mirsepassi, Ronald T. Smith, Michael J. Papac
  • Publication number: 20170176660
    Abstract: An illumination fiber optics is provided that includes an optical fiber, configured to receive illumination light at a proximal end from a light source; and a light-scattering element, at a distal end of the optical fiber, configured to receive the illumination light from the optical fiber at a proximal end and to emit the illumination light at a distal end in a wide angle. The illumination fiber optics can be prepared by providing an optical fiber, configured to receive illumination light at a proximal end from a light source; and creating a light-scattering element at a distal end of the optical fiber, configured to receive the illumination light from the optical fiber at a proximal end and to emit the illumination light at a distal end in a wide angle.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Alireza Mirsepassi, Ronald T. Smith, Michael J. Papac, Chenguang Diao
  • Publication number: 20170172692
    Abstract: A process of making a diverging-light fiber optics illumination delivery system includes providing a micro-post comprising a glass-ceramic light-scattering element that includes at least one of a ceramic, a glass ceramic, an immiscible glass, a porous glass, opal glass, amorphous glass, an aerated glass, and a nanostructured glass; and fusion-splicing the glass-ceramic micro-post to the optical fiber by pulling an arc between electrodes across a gap formed by the optical fiber and the glass-ceramic micro-post; maintaining the arc for a time sufficiently long to make facing surfaces of the optical fiber and the micro-post one of malleable and molten; and pushing and thereby fusing together the facing surfaces of the optical fiber and the micro-post. Some embodiments can include fusing the glass-ceramic micro-post to the optical fiber by applying a laser beam to heat up at least one of the facing surfaces of the optical fiber and the glass-ceramic micro-post.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Alireza Mirsepassi, Ronald T. Smith, Michael J. Papac, Chenguang Diao
  • Patent number: 9658406
    Abstract: According to certain embodiments, a method comprises disposing a first nanofiber portion of a nanofiber and a first assisting fiber portion of an assisting fiber into a ferrule of a connector. A second assisting fiber portion is heated. The nanofiber and assisting fiber are moved such that a portion of the heated assisting fiber portion is disposed within the ferrule. According to other embodiments, a method comprises placing a fiber within a ferrule of a connector having a fixed point such that a fiber center is a fiber distance away from a receptacle center. The fiber distance between the fiber center and receptacle center is measured. An angular offset between the fixed point and fiber center is measured about the receptacle center. A rotation angle for the fiber distance and angular offset is determined. The ferrule is rotated relative to the connector according to the rotation angle.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: May 23, 2017
    Assignee: Novartis AG
    Inventors: Eyad Ammari, Chenguang Diao
  • Publication number: 20170119491
    Abstract: An ophthalmic cannula assembly may include a cannula having an outer cannula surface and an inner cylindrical bore. A hub adjoining a proximal end of the cannula may define a maximum outer hub diameter that is greater than an outer diameter of the cannula. An optical fiber may be attached to the outer cannula surface for at least a portion of a length of the cannula. A cover material may be in contact with the outer cannula surface, and may cover at least a portion of the optical fiber. A light diffuser may be disposed at a distal tip of the optical fiber.
    Type: Application
    Filed: March 18, 2016
    Publication date: May 4, 2017
    Inventors: Alireza Mirsepassi, Michael James Papac, Barry L. Wheatley, Chenguang Diao
  • Publication number: 20150370018
    Abstract: According to certain embodiments, a method comprises disposing a first nanofiber portion of a nanofiber and a first assisting fiber portion of an assisting fiber into a ferrule of a connector. A second assisting fiber portion is heated. The nanofiber and assisting fiber are moved such that a portion of the heated assisting fiber portion is disposed within the ferrule. According to other embodiments, a method comprises placing a fiber within a ferrule of a connector having a fixed point such that a fiber center is a fiber distance away from a receptacle center. The fiber distance between the fiber center and receptacle center is measured. An angular offset between the fixed point and fiber center is measured about the receptacle center. A rotation angle for the fiber distance and angular offset is determined. The ferrule is rotated relative to the connector according to the rotation angle.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 24, 2015
    Inventors: Eyad Ammari, Chenguang Diao
  • Publication number: 20140180264
    Abstract: A surgical probe includes a cannula assembly, having a graded index (GRIN) fiber that is configured to receive a multi-spot light beam at a proximal end and to emit the multi-spot light beam at a distal end ; an adapter, having a distal end, configured to receive the cannula assembly, with the proximal end of the GRIN fiber, a proximal end, configured to couple to a light guide via a connector and to receive a light delivered by the light guide from a laser source to the adapter, and an interface, configured to couple the light delivered by the light guide to the proximal end of the GRIN fiber; wherein a length of the GRIN fiber is sufficiently long that the interface is outside a patient's eye during a photocoagulation procedure.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: ALCON RESEARCH, LTD.
    Inventors: Chenguang Diao, Ronald T. Smith
  • Patent number: 8561280
    Abstract: In certain embodiments, assembling a multi-fiber multi-spot laser system includes heating a ferrule until an interior diameter of an interior volume of the ferrule has expanded to greater than a predetermined diameter. End portions of a number of optical fibers are disposed within the interior volume. The ferrule is cooled to allow a cross-section of the fibers to conform to a fiber pattern having the predetermined diameter. At least a portion of the ferrule is disposed within a connector body to yield at least a portion of an optical fiber connector. In certain embodiments, the ferrule is rotated with respect to the connector body to align the fiber pattern with a laser spot pattern.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: October 22, 2013
    Assignee: Alcon Research, Ltd.
    Inventors: Chenguang Diao, Ronald T. Smith
  • Publication number: 20130097843
    Abstract: In certain embodiments, assembling a multi-fiber multi-spot laser system includes heating a ferrule until an interior diameter of an interior volume of the ferrule has expanded to greater than a predetermined diameter. End portions of a number of optical fibers are disposed within the interior volume. The ferrule is cooled to allow a cross-section of the fibers to conform to a fiber pattern having the predetermined diameter. At least a portion of the ferrule is disposed within a connector body to yield at least a portion of an optical fiber connector. In certain embodiments, the ferrule is rotated with respect to the connector body to align the fiber pattern with a laser spot pattern.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Inventors: Chenguang Diao, Ronald T. Smith