Patents by Inventor Chengxi Zhao

Chengxi Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11695382
    Abstract: A method includes depositing a first metal layer on a semiconductor substrate; etching the first metal layer to form a first electrode having a first lead; depositing a piezoelectric layer on the semiconductor substrate and first electrode; etching the piezoelectric layer to a shape of the gyrator to be formed within the circulator; depositing a second metal layer on the piezoelectric layer; etching the second metal layer to form a second electrode having a second lead, the second electrode being positioned opposite the first electrode, wherein the first lead and the second lead form an electrical port; depositing a magnetostrictive layer on the second electrode; etching the magnetostrictive layer to approximately the shape of the piezoelectric layer; depositing a third metal layer on the magnetostrictive layer; and etching the third metal layer to form a metal coil that has a gap on one side to define a magnetic port.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: July 4, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Songbin Gong, Ruochen Lu, Tomas Manzaneque Garcia, Cheng Tu, Daniel Shoemaker, Chengxi Zhao
  • Publication number: 20200350884
    Abstract: A method includes depositing a first metal layer on a semiconductor substrate; etching the first metal layer to form a first electrode having a first lead; depositing a piezoelectric layer on the semiconductor substrate and first electrode; etching the piezoelectric layer to a shape of the gyrator to be formed within the circulator; depositing a second metal layer on the piezoelectric layer; etching the second metal layer to form a second electrode having a second lead, the second electrode being positioned opposite the first electrode, wherein the first lead and the second lead form an electrical port; depositing a magnetostrictive layer on the second electrode; etching the magnetostrictive layer to approximately the shape of the piezoelectric layer; depositing a third metal layer on the magnetostrictive layer; and etching the third metal layer to form a metal coil that has a gap on one side to define a magnetic port.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Inventors: Songbin Gong, Ruochen Lu, Tomas Manzaneque Garcia, Cheng Tu, Daniel Shoemaker, Chengxi Zhao
  • Patent number: 10727804
    Abstract: An integrated circuit is a layered device, on a semiconductor substrate, which contains metal electrodes that sandwich a piezoelectric layer, followed by a magnetostrictive layer and a metal coil. The metal electrodes define an electrical port across which to receive an alternating current (AC) voltage, which is applied across the piezoelectric layer to cause a time-varying strain in the piezoelectric layer. The magnetostrictive layer is to translate the time-varying strain, received by way of a vibration mode from interaction with the piezoelectric layer, into a time-varying electromagnetic field. The metal coil, disposed on the magnetostrictive layer, includes a magnetic port at which to induce a current based on exposure to the time-varying electromagnetic field generated by the magnetostrictive layer.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: July 28, 2020
    Assignee: Board of Trustees of the University of Illinois
    Inventors: Songbin Gong, Ruochen Lu, Tomas Manzaneque Garcia, Cheng Tu, Daniel Shoemaker, Chengxi Zhao
  • Publication number: 20180115294
    Abstract: An integrated circuit is a layered device, on a semiconductor substrate, which contains metal electrodes that sandwich a piezoelectric layer, followed by a magnetostrictive layer and a metal coil. The metal electrodes define an electrical port across which to receive an alternating current (AC) voltage, which is applied across the piezoelectric layer to cause a time-varying strain in the piezoelectric layer. The magnetostrictive layer is to translate the time-varying strain, received by way of a vibration mode from interaction with the piezoelectric layer, into a time-varying electromagnetic field. The metal coil, disposed on the magnetostrictive layer, includes a magnetic port at which to induce a current based on exposure to the time-varying electromagnetic field generated by the magnetostrictive layer.
    Type: Application
    Filed: October 23, 2017
    Publication date: April 26, 2018
    Inventors: Songbin Gong, Rouchen Lu, Tomas Manzaneque Garcia, Cheng Tu, Daniel Shoemaker, Chengxi Zhao