Patents by Inventor Chengxun Liu

Chengxun Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971385
    Abstract: A cyclic capillary electrophoresis device includes a capillary channel that forms a closed loop. The capillary channel comprises an inner half facing toward a space enclosed by the loop, where the inner half having an inner wall of first charge density, and an outer half facing away from the space enclosed by the loop, where the outer half having an inner wall surface of second charge density. A difference between the first and the second charge densities exists or can be turned on. The difference is configured to create a smaller average electroosmotic flow velocity in the inner half than in the outer half.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: April 30, 2024
    Assignees: Imec vzw, Katholieke Universiteit Leuven
    Inventors: Koen Martens, Chengxun Liu, Camila Dalben Madeira Campos, Rita Vos
  • Publication number: 20230380720
    Abstract: A collecting device (200) for collection of particles and presentation of collected particles for analysis comprises: a first layer (202) and a second layer (220) spaced apart for defining a particle collection chamber (240); wherein the first layer (202) is configured to receive a flow of air (104) carrying airborne particles, wherein the first layer (202) comprises a plurality of inlet nozzles (210) configured to extend through the first layer (202) for transporting the flow of air (104) therethrough; wherein the inlet nozzles (210) are configured to face a first surface (222) of the second layer (220) for capturing airborne particles in the flow of air (104) entering the particle collection chamber (240) by impaction of airborne particles; wherein the collecting device (200) is configured to provide optical access for performing a measurement, based on light, of airborne particles collected in the particle collection chamber (240).
    Type: Application
    Filed: October 14, 2021
    Publication date: November 30, 2023
    Inventors: Peter PEUMANS, Benjamin JONES, Xavier ROTTENBERG, Chengxun LIU, Ahmed TAHER
  • Patent number: 11772095
    Abstract: A microfluidic routing device for routing objects of interest in a microfluidic flow includes a substrate; a first layer provided on the substrate, in which the first layer forms a bottom wall of a microfluidic channel. At least two holes through the first layer form respectively an inlet and an outlet for the microfluidic channel The microfluidic routing device further includes a second layer spaced away from the first layer, in which the second layer forms a top wall of the microfluidic channel. The second layer is configured to transmit an optical signal from the microfluidic channel. The microfluidic routing device includes an actuator for actuating the objects of interest in a sorting junction of the microfluidic channel.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: October 3, 2023
    Assignee: IMEC VZW
    Inventors: Chengxun Liu, Bivragh Majeed, Abdulkadir Yurt
  • Publication number: 20230204540
    Abstract: An electric field gradient focusing device is provided that includes: (i) a fluidic channel having an inlet and an outlet for a fluid, (ii) a first actuator configured to induce a fluid flow in the fluidic channel from the inlet to the outlet via AC electroosmosis, and (iii) a second actuator configured to generate a DC electric field gradient along at least part of the fluidic channel.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 29, 2023
    Inventors: Willem Van Roy, Chengxun Liu, Tinne De Moor
  • Publication number: 20230191411
    Abstract: Embodiments for sorting particles are provided that include a microfluidic channel configured to receive a microfluidic flow that comprises a plurality of particles having different characteristics, the microfluidic channel having a plurality of output flow channels, a first detector configured to detect the location of the particles, a plurality of actuators located along the direction of the microfluidic flow and defining a sorting electrode arrangement. The microfluidic device further comprises a controller configured to receive signals from the first detector and to provide force field profiles for each of the plurality of particles, wherein each force field profile comprises a plurality of deflection force settings along the direction of the microfluidic flow. The controller individually addresses the plurality of actuators to generate a plurality of actuation inducing fields along the direction of the microfluidic flow to generate the deflection force settings in the force field profiles.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 22, 2023
    Inventors: Chengxun Liu, Camila Dalben Madeira Campos, Xavier Rottenberg
  • Patent number: 11511275
    Abstract: A method for detecting, sorting, purifying and characterizing objects of interest in a liquid sample. The method comprises preparing, in a preparation module ON) of a microfluidic router system, the liquid sample for processing. Preparing comprises transporting the sample through a microfluidic channel, and forwarding the prepared sample from an outlet of the preparation module into an inlet of a routing module. Forwarding comprises coupling a microfluidic flow between the outlet and the inlet to passively buffer against or actively compensate for variations in a flow rate of the prepared sample at the outlet, and diverting the objects of interest from the microfluidic flow. Forwarding the sample comprises sensing a flow characteristic of the sample in preparation, routing module, or in flow connection, and controlling a flow control element taking the sensed characteristic into account to compensate for a variation in the flow rate by a closed-loop flow control.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: November 29, 2022
    Assignee: IMEC VZW
    Inventor: Chengxun Liu
  • Patent number: 11454583
    Abstract: An example includes a field-flow fractionation device for the continuous separation of sample components including a channel comprising a sample inlet and a plurality of sample outlets, the channel being for coupling to a flow generator for translocating the sample components along the channel in a first direction from the sample inlet to the plurality of sample outlets, an actuator, which is not the flow generator, coupled to the channel, for translocating the sample components in a second direction, at a first angle with the first direction, an array of electrodes for connection to an AC power source, being in a path taken by the sample components in the channel, arranged in a plurality of rows, and in such a way that adjacent rows can be set at different potentials and every other row can be set at the same potential.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: September 27, 2022
    Assignees: IMEC VZW, Katholieke Universiteit, KU Leuven R&D
    Inventors: Chengxun Liu, Andim Stassen, Ying Ting Set
  • Patent number: 11358144
    Abstract: A micro-fluidic device is provided to sort out objects from a liquid stream. The device comprises a first channel comprising a first liquid and a second channel comprising a second liquid and the first liquid, and a third channel. The second channel is connected to the first channel and the channels are positioned such that a jet flow coming from the second channel can deflect objects in the first liquid into the third channel. The first liquid is a liquid which has a higher viscosity than water and the second liquid may be the same as or different from the first liquid. The micro-fluidic device is adapted for generating the jet flow in the second liquid.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: June 14, 2022
    Assignee: IMEC VZW
    Inventors: Chengxun Liu, Rodrigo Sergio Wiederkehr
  • Patent number: 11338291
    Abstract: Disclosed herein are microfluidic actuators for selecting objects in a fluid stream comprising a plurality of objects. In some embodiments, the actuator comprises an object detection means adapted for, upon arrival of an object, identifying whether an object is an object of interest. It further comprises a heater adapted for generating a jet flow for deflecting an object of interest from the fluid stream and a controller for activating the heater as function of the detection of an object of interest using a nucleation signal. The controller is adapted for obtaining temperature information of the heater and for adjusting a nucleation signal for the heater taking into account the obtained temperature information. Also disclosed are microfluidic systems and diagnostic devices comprising the microfluidic actuators of the disclosure, as well as methods of use thereof.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: May 24, 2022
    Assignees: IMEC VZW, KATHOLIEKE UNIVERSITEIT LEUVEN, KU LEUVEN R&D
    Inventors: Koen Johannes Hubertus Gerardus de Wijs, Chengxun Liu
  • Patent number: 11313489
    Abstract: Example embodiments relate to microfluidic devices for controlling pneumatic microvalves. One embodiment includes a microfluidic device for independently controlling a plurality of pneumatic microvalves. The microfluidic device is couplable to a pressure source. The microfluidic device includes a first substrate. The microfluidic device also includes a flexible membrane covering the first substrate. Additionally, the microfluidic device includes a second substrate covering the flexible membrane. Further, the microfluidic device includes one or more fluidic channels at least partially defined in the first substrate. In addition, the microfluidic device includes a pressure couplable to the pressure source and branching into a plurality of pressure channels. Still further, the microfluidic device includes at least one pressure control switch per pressure channel.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: April 26, 2022
    Assignee: IMEC VZW
    Inventors: Lei Zhang, Tim Stakenborg, Chengxun Liu, David Cheyns
  • Patent number: 11307133
    Abstract: A device (110) for illuminating a particle comprises: a light waveguide (112; 412a, 412b; 512a, 512b) arranged on a substrate (114); an output coupler (118) configured to output a light beam (150; 450a, 450b; 550a, 550b) forming a sheet-like shape having a cross-section which has an extension in a first direction being larger than a size of a particle; and a fluidic channel (116; 416; 516) arranged on the substrate (114) for guiding a flow of particles along a longitudinal direction of the fluidic channel (116; 416; 516); wherein the sheet-like shape of the light beam (150; 450a, 450b; 550a, 550b) is arranged within the fluidic channel (116; 416; 516) and the first direction of the cross-section of the light beam (150; 450a, 450b; 550a, 550b) forms an angle to the longitudinal direction of the fluidic channel (116; 416; 516).
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: April 19, 2022
    Assignee: IMEC VZW
    Inventors: Chengxun Liu, Dries Vercruysse, Niels Verellen, Abdulkadir Yurt
  • Patent number: 11207683
    Abstract: At least one embodiment relates to a focusing arrangement for focusing particles or cells in a flow. The arrangement includes at least one channel for guiding the flow. The channel includes (i) at least one particle confinement structure having particle flow boundaries and (ii) at least one acoustic confinement structure having acoustic field boundaries adapted for confining acoustic fields. The acoustic field boundaries may be different from the particle flow boundaries, and the at least one acoustic confinement structure may be arranged with regard to the channel to at least partially confine acoustic fields in the channel.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: December 28, 2021
    Assignees: IMEC vzw, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Shengping Mao, Erik Sohn, Xavier Rottenberg, Chengxun Liu
  • Publication number: 20210364409
    Abstract: A device (110) for illuminating a particle comprises: a light waveguide (112; 412a, 412b; 512a, 512b) arranged on a substrate (114); an output coupler (118) configured to output a light beam (150; 450a, 450b; 550a, 550b) forming a sheet-like shape having a cross-section which has an extension in a first direction being larger than a size of a particle; and a fluidic channel (116; 416; 516) arranged on the substrate (114) for guiding a flow of particles along a longitudinal direction of the fluidic channel (116; 416; 516); wherein the sheet-like shape of the light beam (150; 450a, 450b; 550a, 550b) is arranged within the fluidic channel (116; 416; 516) and the first direction of the cross-section of the light beam (150; 450a, 450b; 550a, 550b) forms an angle to the longitudinal direction of the fluidic channel (116; 416; 516).
    Type: Application
    Filed: December 19, 2018
    Publication date: November 25, 2021
    Inventors: Chengxun LIU, Dries VERCRUYSSE, Niels VERELLEN, Abdulkadir YURT
  • Publication number: 20210199556
    Abstract: An example includes a field-flow fractionation device for the continuous separation of sample components including a channel comprising a sample inlet and a plurality of sample outlets, the channel being for coupling to a flow generator for translocating the sample components along the channel in a first direction from the sample inlet to the plurality of sample outlets, an actuator, which is not the flow generator, coupled to the channel, for translocating the sample components in a second direction, at a first angle with the first direction, an array of electrodes for connection to an AC power source, being in a path taken by the sample components in the channel, arranged in a plurality of rows, and in such a way that adjacent rows can be set at different potentials and every other row can be set at the same potential.
    Type: Application
    Filed: December 24, 2020
    Publication date: July 1, 2021
    Inventors: Chengxun Liu, Andim Stassen, Ying Ting Set
  • Publication number: 20210199623
    Abstract: A method for continuously separating components from a sample includes providing a field-flow fractionation device including: a channel coupled to a flow generator for translocating the sample components along the channel in a first direction, an actuator for translocating the sample components in a second direction, at an angle with the first direction, and an array of electrodes electrically or capacitively connected to an AC power source, operating the actuator so as to translocate the sample components in a second direction at an angle with the first direction, operating the AC power source so as to generate an AC electric field between adjacent rows, and operating the flow generator, collecting sample components from the sample outlets.
    Type: Application
    Filed: December 21, 2020
    Publication date: July 1, 2021
    Inventors: Chengxun Liu, Andim Stassen, Ying Ting Set
  • Publication number: 20210199211
    Abstract: Example embodiments relate to microfluidic devices for controlling pneumatic microvalves. One embodiment includes a microfluidic device for independently controlling a plurality of pneumatic microvalves. The microfluidic device is couplable to a pressure source. The microfluidic device includes a first substrate. The microfluidic device also includes a flexible membrane covering the first substrate. Additionally, the microfluidic device includes a second substrate covering the flexible membrane. Further, the microfluidic device includes one or more fluidic channels at least partially defined in the first substrate. In addition, the microfluidic device includes a pressure couplable to the pressure source and branching into a plurality of pressure channels. Still further, the microfluidic device includes at least one pressure control switch per pressure channel.
    Type: Application
    Filed: December 28, 2020
    Publication date: July 1, 2021
    Inventors: Lei Zhang, Tim Stakenborg, Chengxun Liu, David Cheyns
  • Publication number: 20210162414
    Abstract: A microfluidic routing device for routing objects of interest in a microfluidic flow includes a substrate; a first layer provided on the substrate, in which the first layer forms a bottom wall of a microfluidic channel. At least two holes through the first layer form respectively an inlet and an outlet for the microfluidic channel The microfluidic routing device further includes a second layer spaced away from the first layer, in which the second layer forms a top wall of the microfluidic channel. The second layer is configured to transmit an optical signal from the microfluidic channel. The microfluidic routing device includes an actuator for actuating the objects of interest in a sorting junction of the microfluidic channel.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 3, 2021
    Inventors: Chengxun Liu, Bivragh Majeed, Abdulkadir Yurt
  • Publication number: 20210080427
    Abstract: A cyclic capillary electrophoresis device includes a capillary channel that forms a closed loop. The capillary channel comprises an inner half facing toward a space enclosed by the loop, where the inner half having an inner wall of first charge density, and an outer half facing away from the space enclosed by the loop, where the outer half having an inner wall surface of second charge density. A difference between the first and the second charge densities exists or can be turned on. The difference is configured to create a smaller average electroosmotic flow velocity in the inner half than in the outer half.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 18, 2021
    Inventors: Koen Martens, Chengxun Liu, Camila Dalben Madeira Campos, Rita Vos
  • Publication number: 20200353468
    Abstract: A method for detecting, sorting, purifying and characterizing objects of interest in a liquid sample. The method comprises preparing, in a preparation module ON) of a microfluidic router system, the liquid sample for processing, Preparing comprises transporting the sample through a microfluidic channel, and forwarding the prepared sample from an outlet of the preparation module into an inlet of a routing module. Forwarding comprises coupling a microfluidic flow between the outlet and the inlet to passively buffer against or actively compensate for variations in a flow rate of the prepared sample at the outlet, and diverting the objects of interest from the microfluidic flow. Forwarding the sample comprises sensing a flow characteristic of the sample in preparation, routing module, or in flow connection, and controlling a flow control element taking the sensed characteristic into account to compensate for a variation in the flow rate by a closed-loop flow control.
    Type: Application
    Filed: December 20, 2018
    Publication date: November 12, 2020
    Inventor: Chengxun Liu
  • Publication number: 20190351408
    Abstract: A micro-fluidic device is provided to sort out objects from a liquid stream. The device comprises a first channel comprising a first liquid and a second channel comprising a second liquid and the first liquid, and a third channel. The second channel is connected to the first channel and the channels are positioned such that a jet flow coming from the second channel can deflect objects in the first liquid into the third channel. The first liquid is a liquid which has a higher viscosity than water and the second liquid may be the same as or different from the first liquid. The micro-fluidic device is adapted for generating the jet flow in the second liquid.
    Type: Application
    Filed: December 20, 2017
    Publication date: November 21, 2019
    Inventors: Chengxun Liu, Rodrigo Sergio Wiederkehr