Patents by Inventor Chenhui SUN

Chenhui SUN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12217188
    Abstract: The present application discloses a method and a device for user grouping and resource allocation in a NOMA-MEC system. The hybrid deep reinforcement learning algorithm proposed in the present application solves the hybrid problem of deep reinforcement learning that is difficult to deal with both discrete and continuous action spaces by using DDPG to optimize continuous actions and DQN to optimize discrete actions. Specifically, the algorithm determines a bandwidth allocation, an offloading decision, and a sub-channel allocation (user grouping) of the user device based on the user's channel state, in order to maximize the ratio of the computation rate to the consumed power of the system. The algorithm is well adapted to the dynamic characteristics of the environment and effectively improves the energy efficiency and spectrum resource utilization of the system.
    Type: Grant
    Filed: April 16, 2024
    Date of Patent: February 4, 2025
    Inventors: Shasha Zhao, Lidan Qin, Dengyin Zhang, Chenhui Sun, Qing Wen, Ruijie Chen, Yufan Liu
  • Publication number: 20240296333
    Abstract: The present application discloses a method and a device for user grouping and resource allocation in a NOMA-MEC system. The hybrid deep reinforcement learning algorithm proposed in the present application solves the hybrid problem of deep reinforcement learning that is difficult to deal with both discrete and continuous action spaces by using DDPG to optimize continuous actions and DQN to optimize discrete actions. Specifically, the algorithm determines a bandwidth allocation, an offloading decision, and a sub-channel allocation (user grouping) of the user device based on the user's channel state, in order to maximize the ratio of the computation rate to the consumed power of the system. The algorithm is well adapted to the dynamic characteristics of the environment and effectively improves the energy efficiency and spectrum resource utilization of the system.
    Type: Application
    Filed: April 16, 2024
    Publication date: September 5, 2024
    Inventors: Shasha ZHAO, Lidan QIN, Dengyin ZHANG, Chenhui SUN, Qing WEN, Ruijie CHEN, Yufan LIU
  • Publication number: 20220405129
    Abstract: The present disclosure discloses a workflow scheduling method and system based on a multi-target particle swarm algorithm, and a storage medium. The method comprises the following steps that first, the difference between the frequency reduction characteristic and the execution time of each server in a cluster is considered; a multi-target comprehensive evaluation model covering workflow execution overhead, execution time and cluster load balance is constructed on the basis of a traditional model; second, a multi-target particle swarm algorithm is provided for workflow scheduling, and an efficient solving method is provided. The method alleviates the defects of premature convergence and low species diversity of the particle swarm algorithm, reduces the execution overhead and execution time of the workflow on the cluster server, and better balances the load of the cluster server.
    Type: Application
    Filed: June 22, 2022
    Publication date: December 22, 2022
    Applicant: NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS
    Inventors: Dengyin ZHANG, Yingjie KOU, Chenhui SUN, Yulian ZHANG, Shibo KANG