Patents by Inventor Cherie Elaine Kushner
Cherie Elaine Kushner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9577864Abstract: In a software receiver, a received electromagnetic signal is sampled in “slices”, each having a duration of some multiple of a reference frequency. The samples of each slice are correlated with values in a pair of reference signals, such as sine and cosine, at the reference frequency. This yields a two-tuple for each slice, which two-tuples may be stored. The stored two-tuples can be simply added to arrive at a correlation value of narrower bandwidth than that of any slice taken alone. The stored two-tuples can be taken in sequence, each rotated by some predetermined angle relative to its predecessor in sequence, and the rotated two-tuples summed to arrive at a correlation value with respect to a frequency that is offset from the reference frequency to an extent that relates to the predetermined angle. In this way, the receiver is able to proceed despite the transmitted frequency not being known exactly in advance and does not require prodigious storage or computational resources.Type: GrantFiled: October 3, 2013Date of Patent: February 21, 2017Assignee: Proteus Digital Health, Inc.Inventors: Robert Alan Fleming, Cherie Elaine Kushner, William McAllister, Mark Zdeblick
-
Publication number: 20160285564Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.Type: ApplicationFiled: June 9, 2016Publication date: September 29, 2016Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Publication number: 20160226697Abstract: In a software receiver, a received electromagnetic signal is sampled in “slices”, each having a duration of some multiple of a reference frequency. The samples of each slice are correlated with values in a pair of reference signals, such as sine and cosine, at the reference frequency. This yields a two-tuple for each slice, which two-tuples may be stored. The stored two-tuples can be simply added to arrive at a correlation value of narrower bandwidth than that of any slice taken alone. The stored two-tuples can be taken in sequence, each rotated by some predetermined angle relative to its predecessor in sequence, and the rotated two-tuples summed to arrive at a correlation value with respect to a frequency that is offset from the reference frequency to an extent that relates to the predetermined angle. In this way, the receiver is able to proceed despite the transmitted frequency not being known exactly in advance and does not require prodigious storage or computational resources.Type: ApplicationFiled: October 3, 2014Publication date: August 4, 2016Inventors: Cherie Elaine Kushner, Robert Alan Fleming, Mark Zdeblick
-
Patent number: 9369214Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.Type: GrantFiled: December 24, 2012Date of Patent: June 14, 2016Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Publication number: 20140177394Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.Type: ApplicationFiled: December 24, 2012Publication date: June 26, 2014Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Patent number: 8369185Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.Type: GrantFiled: November 5, 2011Date of Patent: February 5, 2013Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Publication number: 20120113755Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.Type: ApplicationFiled: November 5, 2011Publication date: May 10, 2012Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Patent number: 8094518Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.Type: GrantFiled: May 15, 2008Date of Patent: January 10, 2012Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Publication number: 20080304362Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.Type: ApplicationFiled: May 15, 2008Publication date: December 11, 2008Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Patent number: 6795491Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins.Type: GrantFiled: December 11, 2000Date of Patent: September 21, 2004Assignee: Aether Wire & LocationInventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Patent number: 6757323Abstract: Spread spectrum transceivers communicate using code sequences having low cross-correlations and well-peaked autocorrelations. The initial communications involve broadcasting a beacon signal consisting of a beacon packet repeated at regular intervals (the cycle time). The code sequences may be period-(2n−1) Small Kasami sequences; the beacon packet is a repeated series of (2n/2+1) period-(2n/2−1) progenitor maximal sequences, and behaves like a member of the Kasami family. The acyclic autocorrelation of the beacon packet has regularly-spaced sharp peaks modulated by a pyramidal envelope. The initial communications involve calculating the correlation between the received signal and delayed versions of an internally-generated beacon packet. The length of the initial communications is proportional to the square of the cycle time divided by the width of the acyclic autocorrelation.Type: GrantFiled: November 22, 2000Date of Patent: June 29, 2004Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Patent number: 6400754Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by measuring propagation times of pseudorandom sequences of electromagnetic impulses. The propagation time is determined from a correlator which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. Using pattern recognition the arrival time of the received signal can be determined to within a time much smaller than the separation between bins. Because operation of standard CMOS circuitry generates noise over a large frequency range, only low-noise circuitry operates during transmission and reception. A stage in the low-frequency clock uses low-noise circuitry during transmissions and receptions, and standard circuitry at other times.Type: GrantFiled: December 7, 2000Date of Patent: June 4, 2002Assignee: Aether Wire & Location, Inc.Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Patent number: 6385268Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins.Type: GrantFiled: July 22, 1999Date of Patent: May 7, 2002Assignee: Aether-Wire & TechnologyInventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Publication number: 20010053174Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by measuring propagation times of pseudorandom sequences of electromagnetic impulses. The propagation time is determined from a correlator which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. Using pattern recognition the arrival time of the received signal can be determined to within a time much smaller than the separation between bins. Because operation of standard CMOS circuitry generates noise over a large frequency range, only low-noise circuitry operates during transmission and reception. A stage in the low-frequency clock uses low-noise circuitry during transmissions and receptions, and standard circuitry at other times.Type: ApplicationFiled: December 7, 2000Publication date: December 20, 2001Applicant: Aether Wire & LocationInventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Publication number: 20010033607Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins.Type: ApplicationFiled: December 11, 2000Publication date: October 25, 2001Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Patent number: 6002708Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins.Type: GrantFiled: May 23, 1997Date of Patent: December 14, 1999Assignee: Aether Wire & Location, Inc.Inventors: Robert Alan Fleming, Cherie Elaine Kushner
-
Patent number: 5748891Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins.Type: GrantFiled: July 22, 1994Date of Patent: May 5, 1998Assignee: Aether Wire & LocationInventors: Robert Alan Fleming, Cherie Elaine Kushner