Patents by Inventor Cherie R. Kagan
Cherie R. Kagan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250114753Abstract: A method for forming superparticles, comprising: contacting a source dispersed phase, a sink dispersed phase, and a continuous phase, the source dispersed phase comprising a solvent and a plurality of particles dispersed within the solvent, the sink dispersed phase comprising a solvent, the solvent of the sink dispersed phase having a solubility in the continuous phase at a given temperature that is less than a solubility of the solvent of the source dispersed phase in the continuous phase at that given temperature, and the contacting being performed such that at least some solvent of the source dispersed phase migrates to the sink dispersed phase so as to give rise to a plurality of superparticles that comprise assembled particles of the source dispersed phase.Type: ApplicationFiled: January 25, 2023Publication date: April 10, 2025Inventors: Emanuele MARINO, Sjoerd Willem VAN DONGEN, Thomas Edward KODGER, Christopher B. MURRAY, Cherie R. KAGAN
-
Publication number: 20240192528Abstract: A method for stabilizing a quantum dot's emission spectrum, comprising: illuminating the quantum dot with an illumination fluence sufficient to effect a persistent reduction in blue-shift over time in the quantum dot's spectrum. A method, comprising discriminating between a first quantum dot and a second quantum dot on the basis of spectral stabilities of the first quantum dot and the second quantum dot. A method, comprising: illuminating a quantum dot with a first fluence so as to effect a first emission color from the quantum dot; and illuminating the quantum dot with a second fluence so as to effect a second emission color from the quantum dot, the first fluence and the second fluence differing in intensity. A spectrally-stabilized quantum dot, the spectrally-stabilized quantum dot exhibiting a spectral shift of less than about 2.5 meV over about 15 minutes of continuous operation.Type: ApplicationFiled: January 4, 2024Publication date: June 13, 2024Inventors: Emanuele Marino, Steven J. Neuhaus, Christopher B. Murray, Cherie R. Kagan
-
Publication number: 20240124726Abstract: Provided are nanostructure imprinting processes that utilize dispersions of nanoparticles in aqueous solvents. Also provided are nanostructure imprinting processes that utilize temperature-sensitive solvents that can be thinned via application of temperature. Such solvents allow for formation of nanostructures of particular height.Type: ApplicationFiled: October 10, 2023Publication date: April 18, 2024Inventors: Akhila Mallavarapu, Chavez FK Lawrence, Cherie R. Kagan
-
Publication number: 20230185198Abstract: A patterning method, comprising: disposing a nanoparticle composition on a support material, the disposing being performed such that the nanoparticle composition defines a patterned region having an average inter-nanoparticle distance of less than about 5 nm; and selectively etching the support material so as to give rise to in the support material a plurality of arrayed structures substantially in register with the patterned region of the nanoparticle composition. An article, comprising an article made according to the present disclosure. A workpiece, comprising: an etchable support material; and a nanoparticle composition, the nanoparticle composition being disposed on the support material as a monolayer, the nanoparticle composition defining a patterned region having an average inter-nanoparticle distance of less than about 5 nm, and nanoparticles of the nanoparticle composition having ligands disposed thereon.Type: ApplicationFiled: November 4, 2022Publication date: June 15, 2023Inventors: Cherie R Kagan, Christopher B. Murray, Austin Wesley Keller
-
Patent number: 11543306Abstract: Provided are structurally-reconfigurable, optical metasurfaces constructed by, for example, integrating a plasmonic lattice array in the gap between a pair of microbodies that serve to locally amplify the strain created on an elastomeric substrate by an external mechanical stimulus. The spatial arrangement and therefore the optical response of the plasmonic lattice array is reversible.Type: GrantFiled: September 21, 2020Date of Patent: January 3, 2023Assignee: The Trustees of the University of PennsylvaniaInventors: Cherie R. Kagan, Kevin Turner, Wenxiang Chen, Yijie Jiang
-
Patent number: 11127917Abstract: A method for engineering a line shape of emission spectrum of an organic emissive material in an electroluminescent device is disclosed in which a layer of plasmonic metallic nanostructures having a localized surface plasmonic resonance (LSPR) is provided in proximity to the emissive layer and the layer of plasmonic metallic nanostructures is greater than 2 nm but less than 100 nm from the emissive layer and the LSPR of the plasmonic metallic nanostructures matches the emission wavelength of the organic emissive material. An electroluminescent device incorporating the plasmonic metallic nanostructures is also disclosed.Type: GrantFiled: September 25, 2019Date of Patent: September 21, 2021Assignees: UNIVERSAL DISPLAY CORPORATION, THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIAInventors: Nicholas J. Thompson, Cherie R. Kagan, Christopher B. Murray
-
Patent number: 10593755Abstract: Colloidal nanocrystal electronic devices including multiple types of nanocrystal device elements including nanocrystal metallic electrodes, nanocrystal insulators, and nanocrystal insulators. Colloidal nanocrystal electronic devices may be produced by forming multiple nanocrystal electronic device elements on a substrate.Type: GrantFiled: April 6, 2017Date of Patent: March 17, 2020Assignees: The Trustees of the University of Pennsylvania, Korea Institute of Geoscience and Mineral ResourcesInventors: Cherie R. Kagan, Ji-Hyuk Choi, Han Wang, Soong Ju Oh
-
Publication number: 20200020877Abstract: A method for engineering a line shape of emission spectrum of an organic emissive material in an electroluminescent device is disclosed in which a layer of plasmonic metallic nanostructures having a localized surface plasmonic resonance (LSPR) is provided in proximity to the emissive layer and the layer of plasmonic metallic nanostructures is greater than 2 nm but less than 100 nm from the emissive layer and the LSPR of the plasmonic metallic nanostructures matches the emission wavelength of the organic emissive material. An electroluminescent device incorporating the plasmonic metallic nanostructures is also disclosed.Type: ApplicationFiled: September 25, 2019Publication date: January 16, 2020Applicants: UNIVERSAL DISPLAY CORPRORATION, THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIAInventors: Nicholas J. THOMPSON, Cherie R. KAGAN, Christopher B. MURRAY
-
Publication number: 20190131393Abstract: Colloidal nanocrystal electronic devices including multiple types of nanocrystal device elements including nanocrystal metallic electrodes, nanocrystal insulators, and nanocrystal insulators. Colloidal nanocrystal electronic devices may be produced by forming multiple nanocrystal electronic device elements on a substrate.Type: ApplicationFiled: April 6, 2017Publication date: May 2, 2019Applicants: The Trustees of the University of Pennsylvania, Korea Institute of Geoscience and Mineral ResourcesInventors: Cherie R. KAGAN, Ji-Hyuk CHOI, Han WANG, Soong Ju OH
-
Patent number: 10096734Abstract: Methods of forming colloidal nanocrystal (NC)-based thin film devicesare disclosed. The methods include the steps of depositing a dispersion of NCs on a substrate to form a NC thin-film, wherein at least a portion of the NCs is capped with chalcogenocyanate (xCN)-based ligands; and doping the NC thin-film with a metal.Type: GrantFiled: May 10, 2016Date of Patent: October 9, 2018Assignee: The Trustees of the University of PennsylvaniaInventors: Cherie R. Kagan, Aaron T. Fafarman, Ji-Hyuk Choi, Weon-Kyu Koh, David K. Kim, Soong Ju Oh, Yuming Lai, Sung-Hoon Hong, Sangameshwar Rao Saudari, Christopher B. Murray
-
Patent number: 10096733Abstract: Methods of preparing a dispersion of colloidal nanocrystals (NCs) for use as NC thin films are disclosed. A dispersion of NCs capped with ligands may be mixed with a solution containing chalcogenocyanate (xCN)-based ligands. The mixture may be separated into a supernatant and a flocculate. The flocculate may be dispersed with a solvent to form a subsequent dispersion of NCs capped with xCN-based ligands.Type: GrantFiled: May 10, 2016Date of Patent: October 9, 2018Assignee: The Trustees of the University of PennsylvaniaInventors: Cherie R. Kagan, Aaron T. Fafarman, Ji-Hyuk Choi, Weon-Kyu Koh, David K. Kim, Soong Ju Oh, Yuming Lai, Sung-Hoon Hong, Sangameshwar Rao Saudari, Christopher B. Murray
-
Publication number: 20180175319Abstract: A method for engineering a line shape of emission spectrum of an organic emissive material in an electroluminescent device is disclosed in which a layer of plasmonic metallic nanostructures having a localized surface plasmonic resonance (LSPR) is provided in proximity to the emissive layer and the layer of plasmonic metallic nanostructures is greater than 2 nm but less than 100 nm from the emissive layer and the LSPR of the plasmonic metallic nanostructures matches the emission wavelength of the organic emissive material. An electroluminescent device incorporating the plasmonic metallic nanostructures is also disclosed.Type: ApplicationFiled: December 15, 2016Publication date: June 21, 2018Applicants: Universal Display Corporation, THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIAInventors: Nicholas J. THOMPSON, Cherie R. KAGAN, Christopher B. MURRAY
-
Patent number: 9865465Abstract: Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.Type: GrantFiled: January 17, 2014Date of Patent: January 9, 2018Assignee: The Trustees Of The University Of PennsylvaniaInventors: Cherie R. Kagan, David K. Kim, Ji-Hyuk Choi, Yuming Lai
-
Publication number: 20160336087Abstract: Methods of preparing a dispersion of colloidal nanocrystals (NCs) for use as NC thin films are disclosed. A dispersion of NCs capped with ligands may be mixed with a solution containing chalcogenocyanate (xCN)-based ligands. The mixture may be separated into a supernatant and a flocculate. The flocculate may be dispersed with a solvent to form a subsequent dispersion of NCs capped with xCN-based ligands.Type: ApplicationFiled: May 10, 2016Publication date: November 17, 2016Inventors: Cherie R. Kagan, AARON T. FAFARMAN, JI-HYUK CHOI, WEON-KYU KOH, DAVID K. KIM, SOONG JU OH, YUMING LAI, SUNG-HOON HONG, SANGAMESHWAR RAO SAUDARI, CHRISTOPHER B. MURRAY
-
Publication number: 20160336474Abstract: Methods of forming colloidal nanocrystal (NC)-based thin film devicesare disclosed. The methods include the steps of depositing a dispersion of NCs on a substrate to form a NC thin-film, wherein at least a portion of the NCs is capped with chalcogenocyanate (xCN)-based ligands; and doping the NC thin-film with a metal.Type: ApplicationFiled: May 10, 2016Publication date: November 17, 2016Inventors: CHERIE R. KAGAN, AARON T. FAFARMAN, JI-HYUK CHOI, WEON-KYU KOH, DAVID K. KIM, SOONG JU OH, YUMING LAI, SUNG-HOON HONG, SANGAMESHWAR RAO SAUDARI, CHRISTOPHER B. MURRAY
-
Patent number: 9397310Abstract: A first device comprising a first organic light emitting device (OLED) is described. The first OLED includes an anode, a cathode and an emissive layer disposed between the anode and the cathode. The emissive layer includes a phosphorescent emissive dopant and a host material, that includes nanocrystals. The phosphorescent emissive dopant is bonded to the host material by a bridge moiety.Type: GrantFiled: January 18, 2013Date of Patent: July 19, 2016Assignee: Universal Display CorporationInventors: Angang Dong, Chun Lin, Aaron T. Fafarman, Xingchen Ye, Cherie R. Kagan, Christopher B. Murray, Julia J. Brown
-
Patent number: 9336919Abstract: Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.Type: GrantFiled: August 19, 2013Date of Patent: May 10, 2016Assignee: The Trustees of the University of PennsylvaniaInventors: Cherie R. Kagan, Aaron T. Fafarman, Ji-Hyuk Choi, Weon-kyu Koh, David K. Kim, Soong Ju Oh, Yuming Lai, Sung-Hoon Hong, Sangameshwar Rao Saudari, Christopher B. Murray
-
Publication number: 20150364324Abstract: Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.Type: ApplicationFiled: January 17, 2014Publication date: December 17, 2015Applicant: The Trustees of the University of PennsylvaniaInventors: CHERIE R. KAGAN, DAVID K. KIM, JI-HYUK CHOI, YUMING LAI
-
Publication number: 20140203259Abstract: A first device comprising a first organic light emitting device (OLED) is described. The first OLED includes an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a phosphorescent emissive dopant and a host material. The host material includes inorganic nanocrystals where (i) at least 50% of ligands bonded to said nanocrystals are compact ligands, (ii) an average interparticle distance between adjacent nanoparticles is ?1 nm, or (iii) both. Also described are a method of making the emissive layer and a composition that includes the phosphorescent emissive dopant with the host materials that include the electronically-coupled inorganic nanocrystal host material.Type: ApplicationFiled: January 17, 2014Publication date: July 24, 2014Applicant: Universal Display CorporationInventors: Aaron T. Fafarman, Xingchen Ye, Angang Dong, Christopher B. Murray, Cherie R. Kagan, Chun Lin
-
Publication number: 20140050851Abstract: Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.Type: ApplicationFiled: August 19, 2013Publication date: February 20, 2014Inventors: Cherie R. Kagan, Aaron T. Fafarman, Ji-Hyuk Choi, Weon-kyu Koh, David K. Kim, Soong Ju Oh, Yuming Lai, Sung-Hoon Hong, Sangameshwar Rao Saudari, Christopher B. Murray