Patents by Inventor Cheryl A. Williams

Cheryl A. Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11820392
    Abstract: In exemplary embodiments, methods, systems, and vehicles are provided, with the vehicle including vehicle systems, a communication bus, a first processor, and a communication bus transceiver. The first processor is configured to at least facilitate: determining whether a potential safety concern is present pertaining to control the vehicle systems; and providing communications along the communication bus of the vehicle, the communications including an indication of the potential safety concern. The communication bus transceiver is coupled to the first processor and configured to at least facilitate: recognizing the indication of the potential safety concern; and inhibiting the control for the vehicle systems when the indication of the potential safety concern is recognized by the communication bus transceiver.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: November 21, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jacob Andrew Gerrit Kuiper, Cheryl A. Williams, Natalie A Wienckowski
  • Publication number: 20230150522
    Abstract: In exemplary embodiments, methods, systems, and vehicles are provided, with the vehicle including vehicle systems, a communication bus, a first processor, and a communication bus transceiver. The first processor is configured to at least facilitate: determining whether a potential safety concern is present pertaining to control the vehicle systems; and providing communications along the communication bus of the vehicle, the communications including an indication of the potential safety concern. The communication bus transceiver is coupled to the first processor and configured to at least facilitate: recognizing the indication of the potential safety concern; and inhibiting the control for the vehicle systems when the indication of the potential safety concern is recognized by the communication bus transceiver.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 18, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jacob Andrew Gerrit Kuiper, Cheryl A. Williams, Natalie A Wienckowski
  • Patent number: 10691805
    Abstract: A vehicle control module is provided and includes a hybrid memory and a processor. The hybrid memory includes: application memory that stores application code; boot memory that stores a first RMTS code, where the first RMTS code includes first risk functions; and ETM that temporarily stores a second RMTS code. The second RMTS code includes second risk functions. The processor: based on an operating mode of the vehicle control module, executes the application, first RMTS and second RMTS codes; erases the ETM prior to installation of the vehicle control module in a vehicle or delivery of the vehicle; and based on the first RMTS code, permits execution of the first RMTS code prior to and subsequent to installation of the vehicle control module in the vehicle and the second RMTS code prior to installation of the vehicle control module in the vehicle or delivery of the vehicle.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: June 23, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Joseph E. Ploucha, Cheryl A. Williams, Robert F. Semrau
  • Publication number: 20190251265
    Abstract: A vehicle control module is provided and includes a hybrid memory and a processor. The hybrid memory includes: application memory that stores application code; boot memory that stores a first RMTS code, where the first RMTS code includes first risk functions; and ETM that temporarily stores a second RMTS code. The second RMTS code includes second risk functions. The processor: based on an operating mode of the vehicle control module, executes the application, first RMTS and second RMTS codes; erases the ETM prior to installation of the vehicle control module in a vehicle or delivery of the vehicle; and based on the first RMTS code, permits execution of the first RMTS code prior to and subsequent to installation of the vehicle control module in the vehicle and the second RMTS code prior to installation of the vehicle control module in the vehicle or delivery of the vehicle.
    Type: Application
    Filed: February 14, 2018
    Publication date: August 15, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Joseph E. Ploucha, Cheryl A. Williams, Robert F. Semrau
  • Publication number: 20160165942
    Abstract: A cooking device configured to be placed in the cavity of poultry during cooking to season the poultry inside and out. The cooking device has an oblong shape that is commensurate with the oblong shape of the poultry cavity to maximize the seasoning of the poultry during cooking. The cooking device has a lid that is securable to a bottom member of the cooking device to prevent spillage of the seasoning during placement of the cooking device in the poultry cavity, and during the removal of the cooking device after cooking. The lid has downwardly extending flanges that secure within a rim of the bottom member to both lock and seal the lid in place. A handle allows safe placement and removal, of the cooking device, such as when the poultry is already in an oven, to prevent burns.
    Type: Application
    Filed: July 14, 2015
    Publication date: June 16, 2016
    Inventors: STEVEN J. ESPOSITO, CHERYL WILLIAMS
  • Patent number: 9221700
    Abstract: This invention relates to an improved method for inhibiting the formation and deposition of silica and silicate compounds in a water system. In particular, the method includes adding to the water system a relatively low molecular weight organic, anionic polymer. The polymer preferrably has an acrylic acid or methacrylic acid functionality and is preferrably selected from one or more of homopolymers of acrylic acid, a methacrylic acid/polyethylene glycol allyl ether copolymer, a homopolymer of methacrylic acid, an acrylic acid/polyethylene glycol allyl ether copolymer, and an acrylic acid/1-allyloxy-2-hydroxypropane sulfonic acid copolymer, homopolymers of maleic anhydride, copolymers of maleic anhydride and polyethylene glycol allyl ether, and combinations thereof.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: December 29, 2015
    Assignee: Ecolab USA Inc.
    Inventors: Nathaniel T. Greene, Jasbir S. Gill, Martin R. Godfrey, Cheryl Williams
  • Patent number: 8744716
    Abstract: An engine control system includes a mode selection module that is configured to select an operating mode from one of an open loop control mode, a torque control mode, and a speed control mode based on an engine speed and a driver input. An axle torque arbitration (ABA) module generates ABA predicted and immediate torque requests based on the driver input. A speed control (SC) module generates a first set of SC predicted and immediate torque requests based on engine speed. A propulsion torque arbitration (PTA) module generates PTA predicted and immediate torque requests based on one of the ABA predicted and immediate torque requests and the first set of SC predicted and immediate torque requests based on the operating mode. A torque output control module controls output torque of an engine based on the PTA predicted and immediate torque requests.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: June 3, 2014
    Inventors: Krishnendu Kar, Michael Livshiz, Christopher E. Whitney, Cheryl A. Williams, Etsuko Muraji Stewart, Matthew M. Manning
  • Patent number: 8731751
    Abstract: A hybrid controller for controlling a hybrid vehicle is set forth. The hybrid vehicle has an engine, an electric motor and an engine controller determining a crankshaft torque. The hybrid controller includes an optimization module determining an electric motor torque, determining an engine torque and communicating the engine torque from the hybrid controller to the engine controller. The hybrid controller also includes a motor control module controlling the electric motor based on the electric motor torque.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: May 20, 2014
    Inventors: Robert C. Simon, Jr., Christopher E. Whitney, William R. Cawthorne, John L. Lahti, Douglas J. Babcock, Vivek Mehta, Anthony H. Heap, Todd R. Shupe, Cheryl A. Williams, Leonard G. Wozniak, Ning Jin, Birendra P. Bhattarai, James L. Worthing
  • Patent number: 8355856
    Abstract: An engine control system of a vehicle comprises a reserves module and a fault diagnostic module. The reserves module controls airflow into an engine based on a driver torque request, increases the airflow into the engine when a reserve torque request is received, and outputs a torque output command for the engine based on the driver torque request. The fault diagnostic module selectively diagnoses a fault in the reserves module when the torque output command is greater than a sum of the driver torque request, a predetermined torque, and a load applied to the engine.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: January 15, 2013
    Inventors: Timothy J. Hartrey, Christopher E. Whitney, Jinchun Peng, Cheryl A. Williams, Richard B. Jess
  • Patent number: 8311721
    Abstract: A reserve torque system comprises a first module and a reserve torque module. The first module generates a first signal a predetermined period before an equivalence ratio (EQR) of an air/fuel mixture supplied to an engine is transitioned from a non-lean EQR to a lean EQR. The reserve torque module creates a reserve torque between when the first signal is generated and when the EQR is transitioned to the lean EQR.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: November 13, 2012
    Inventors: Christopher E. Whitney, Robert J. Genslak, Edward Stuteville, Cheryl A. Williams, Robert C. Simon, Jr.
  • Patent number: 8280612
    Abstract: A coordinated torque control (CTC) system is provided that includes an engine capacity module, a multi-pulse enable module, and a catalyst light off torque reserve module. The engine capacity module determines a torque capacity of an engine and generates a maximum engine torque capacity signal. The multi-pulse enable module enables a multi-pulse mode that includes the injection of at least two pulses of fuel into a cylinder of the engine during a combustion cycle. The multi-pulse enable module generates a multi-pulse desired signal to operate in the multi-pulse mode based on the maximum engine torque capacity signal, a catalyst light off signal, and a brake torque request signal. The catalyst light off torque reserve module generates a torque reserve corrected signal based on the multi-pulse desired signal.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: October 2, 2012
    Inventors: Christopher E. Whitney, Michael Livshiz, Christopher R. Graham, Rafat F Hattar, Cheryl A. Williams
  • Publication number: 20120161068
    Abstract: This invention relates to an improved method for inhibiting the formation and deposition of silica and silicate compounds in a water system. In particular, the method includes adding to the water system a relatively low molecular weight organic, anionic polymer. The polymer preferrably has an acrylic acid or methacrylic acid functionality and is preferrably selected from one or more of homopolymers of acrylic acid, a methacrylic acid/polyethylene glycol allyl ether copolymer, a homopolymer of methacrylic acid, an acrylic acid/polyethylene glycol allyl ether copolymer, and an acrylic acid/1-allyloxy-2-hydroxypropane sulfonic acid copolymer, homopolymers of maleic anhydride, copolymers of maleic anhydride and polyethylene glycol allyl ether, and combinations thereof.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Inventors: Nathaniel T. Greene, Jasbir S. Gill, Martin R. Godfrey, Cheryl Williams
  • Patent number: 8157035
    Abstract: A method of operating an engine control system includes reducing pressures within cylinders of an engine based on an auto start command signal including: receiving a torque request signal; calculating a powertrain output torque; and controlling air flow to the engine based on the powertrain output torque. During a startup of the engine: electric motor torque is increased to a predetermined level and reduced to increase a current speed of the engine; combustion torque of the engine is activated and increased after the current speed is within a predetermined range and a manifold absolute pressure is less than a predetermined level; and the electric motor torque is increased based on a crankshaft output torque signal to increase a crankshaft output torque subsequent to the reducing of the electric motor torque and while performing the activating of the combustion torque.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: April 17, 2012
    Inventors: Christopher E. Whitney, Steven G. Bryde, R. Travis Schwenke, John L. Lahti, Ning Jin, Birendra P. Bhattarai, Cheryl A. Williams, James B Nicholson
  • Publication number: 20110139117
    Abstract: An engine control system includes a mode selection module that is configured to select an operating mode from one of an open loop control mode, a torque control mode, and a speed control mode based on an engine speed and a driver input. An axle torque arbitration (ABA) module generates ABA predicted and immediate torque requests based on the driver input. A speed control (SC) module generates a first set of SC predicted and immediate torque requests based on engine speed. A propulsion torque arbitration (PTA) module generates PTA predicted and immediate torque requests based on one of the ABA predicted and immediate torque requests and the first set of SC predicted and immediate torque requests based on the operating mode. A torque output control module controls output torque of an engine based on the PTA predicted and immediate torque requests.
    Type: Application
    Filed: March 29, 2010
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Krishnendu Kar, Michael Livshiz, Christopher E. Whitney, Cheryl A. Williams, Etsuko Muraji Stewart, Matthew M. Manning
  • Patent number: 7748362
    Abstract: An engine control system includes an air control module, a spark control module, a torque control module, a transient detection module, and a launch torque module. The air control module controls a throttle valve of an engine based on a commanded predicted torque. The spark control module controls spark advance of the engine based on a commanded immediate torque. The torque control module increases the commanded predicted torque when a catalyst light-off (CLO) mode is active, and increases the commanded immediate torque when a driver actuates an accelerator input. The transient detection module generates a lean transient signal when an air per cylinder increase is detected while the CLO mode is active. The launch torque module generates a torque offset signal based on the lean transient signal. The torque control module increases the commanded immediate torque based on the torque offset signal.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: July 6, 2010
    Inventors: Christopher E. Whitney, Michael S. Emmorey, Jeffrey M. Kaiser, Robert C. Simon, Jr., Cheryl A. Williams, Jon C. Wasberg, Eric Ferch, Craig M. Sawdon
  • Publication number: 20100084491
    Abstract: A device for irrigating soil or other substrates is provided. The device is at least in part biodegradable, minimising its impact on the environment and also provides focused irrigation towards desired areas. The device includes a connector end for connection with a liquid supply, and a biodegradable body adapted to receive liquid from the connector end, wherein the outer surface of the body is substantially water resistant with the exception of one or more feeder areas.
    Type: Application
    Filed: April 24, 2008
    Publication date: April 8, 2010
    Inventors: David Williams, Cheryl Williams, Andrew Kluth, Wendy Flicker
  • Publication number: 20100057330
    Abstract: A coordinated torque control (CTC) system is provided that includes an engine capacity module, a multi-pulse enable module, and a catalyst light off torque reserve module. The engine capacity module determines a torque capacity of an engine and generates a maximum engine torque capacity signal. The multi-pulse enable module enables a multi-pulse mode that includes the injection of at least two pulses of fuel into a cylinder of the engine during a combustion cycle. The multi-pulse enable module generates a multi-pulse desired signal to operate in the multi-pulse mode based on the maximum engine torque capacity signal, a catalyst light off signal, and a brake torque request signal. The catalyst light off torque reserve module generates a torque reserve corrected signal based on the multi-pulse desired signal.
    Type: Application
    Filed: August 5, 2009
    Publication date: March 4, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Michael Livshiz, Christopher R. Graham, Rafat F. Hattar, Cheryl A. Williams
  • Publication number: 20100038158
    Abstract: A control system for an engine includes an engine control module (ECM) that operates in a first mode and a second mode. The ECM generates an idle speed signal and a transmission load signal that is based on an idle speed of the engine. The hybrid control module (HCM) increases electric motor torque to increase a current speed of the engine based on the idle speed signal and the transmission load signal. The HCM controls the current speed when in the first mode. The ECM controls the current speed when in the second mode. The HCM transfers control of the current speed to the ECM when at least one of the current speed matches the idle speed and a combustion torque output of the engine is equal to a requested crankshaft output torque.
    Type: Application
    Filed: January 13, 2009
    Publication date: February 18, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Steven G. Bryde, R. Travis Schwenke, John L. Lahti, Ning Jin, Birendra P. Bhattarai, Cheryl A. Williams, James B Nicholson
  • Publication number: 20090299602
    Abstract: An engine control system of a vehicle comprises a reserves module and a fault diagnostic module. The reserves module controls airflow into an engine based on a driver torque request, increases the airflow into the engine when a reserve torque request is received, and outputs a torque output command for the engine based on the driver torque request. The fault diagnostic module selectively diagnoses a fault in the reserves module when the torque output command is greater than a sum of the driver torque request, a predetermined torque, and a load applied to the engine.
    Type: Application
    Filed: February 6, 2009
    Publication date: December 3, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Timothy J. Hartrey, Christopher E. Whitney, Jinchun Peng, Cheryl A. Williams, Richard B. Jess
  • Publication number: 20090283070
    Abstract: An engine control system includes an air control module, a spark control module, a torque control module, a transient detection module, and a launch torque module. The air control module controls a throttle valve of an engine based on a commanded predicted torque. The spark control module controls spark advance of the engine based on a commanded immediate torque. The torque control module increases the commanded predicted torque when a catalyst light-off (CLO) mode is active, and increases the commanded immediate torque when a driver actuates an accelerator input. The transient detection module generates a lean transient signal when an air per cylinder increase is detected while the CLO mode is active. The launch torque module generates a torque offset signal based on the lean transient signal. The torque control module increases the commanded immediate torque based on the torque offset signal.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 19, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Michael S. Emmorey, Jeffrey M. Kaiser, Robert C. Simon, JR., Cheryl A. Williams, Jon C. Wasberg, Eric Ferch, Craig M. Sawdon