Patents by Inventor Cheryl Hartfield

Cheryl Hartfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220349789
    Abstract: To prepare a sample for atom probe tomography, a raw sample body having a surface and a region of interest (ROI) to be inspected by APT is provided. Pillars containing the ROI are formed into the surface of the raw sample body via ablation of material of the raw sample body from the surface with an ultra-short pulsed laser. Redeposited ablated material is removed in the region of the formed pillars. The surface of the formed pillars is polished. A preparation device to perform such a preparation method includes a sample handling unit, a pillar forming unit including an ultra-short pulsed laser, a removal unit to remove redeposited ablated material, and a polishing unit. The result is an efficient preparation of robust samples for atom probe tomography. To investigate a region of interest of a sample, the preparation method is performed and then atom probe tomography of the region of interest is performed.
    Type: Application
    Filed: June 10, 2021
    Publication date: November 3, 2022
    Inventors: Sascha Christian Mueller, Marcus Kaestner, Cheryl Hartfield
  • Patent number: 9704689
    Abstract: A method is provided of reducing the thickness of a region of a target sample. Reference data is obtained that is representative of x-rays generated by a particle beam being directed upon part of a reference sample under a first set of beam conditions. Under a second set of beam conditions the particle beam is directed upon the region of the target sample. The resultant x-rays are monitored as monitored data. Output data are then calculated based upon the reference and the monitored data. Material is then removed from the region, so as to reduce its thickness, in accordance with the output data.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: July 11, 2017
    Assignee: Oxford Instruments Nanotechnology Tools Limited
    Inventors: Christian Lang, Peter Statham, Cheryl Hartfield
  • Publication number: 20160189929
    Abstract: A method for TEM sample preparation with backside milling of a sample extracted from a workpiece in an energetic-beam instrument such as a FIB-SEM is disclosed. The method includes rotating a nanomanipulator probe tip holding an extracted sample by an angle calculated according to the geometry of the apparatus; moving the instrument stage to position a TEM grid in a fixed holder so that the plane of the TEM grid is substantially parallel to the required plane for the TEM sample; attaching the extracted sample to the TEM grid; and, tilting the stage by a stage-tilt angle, while maintaining the holder in the fixed orientation with respect to the stage, so that the axis of the ion beam is made substantially parallel to the required plane for the TEM sample; thereby placing the extracted sample into position for allowing backside milling to prepare a thinned cross-sectional sample for TEM viewing.
    Type: Application
    Filed: October 29, 2015
    Publication date: June 30, 2016
    Inventors: Matt Hammer, Michael Dawson, Cheryl Hartfield
  • Patent number: 9349573
    Abstract: A substrate located in an energetic-beam instrument has a region of interest to be extracted as a sample for further analysis. Cuts are made in the substrate to define a sample, and a stress-buffer layer is formed over the region of interest or adjacent to it. An isolating cut is made to separate the portion of the substrate containing the region of interest from the bulk substrate; however, the isolated area remains attached to the stress-buffer layer. An end-effector, such as the probe of a nano-manipulator, is attached to the stress-buffer layer, and the stress-buffer layer is cut to free the sample. The sample may then be attached to a holder by attachment of the stress-buffer layer thereto. Thus the sample is never at the same time connected directly and rigidly to two different objects that may move relatively to one another, creating undesirable stresses in the sample.
    Type: Grant
    Filed: July 11, 2015
    Date of Patent: May 24, 2016
    Assignee: Omniprobe, Inc.
    Inventors: Rocky Kruger, Gonzalo Amador, Cheryl Hartfield
  • Publication number: 20160093468
    Abstract: A method is provided of reducing the thickness of a region of a target sample. Reference data is obtained that is representative of x-rays generated by a particle beam being directed upon part of a reference sample under a first set of beam conditions. Under a second set of beam conditions the particle beam is directed upon the region of the target sample. The resultant x-rays are monitored as monitored data. Output data are then calculated based upon the reference and the monitored data. Material is then removed from the region, so as to reduce its thickness, in accordance with the output data.
    Type: Application
    Filed: May 12, 2014
    Publication date: March 31, 2016
    Inventors: Christian LANG, Peter STATHAM, Cheryl HARTFIELD
  • Publication number: 20160035540
    Abstract: A substrate located in an energetic-beam instrument has a region of interest to be extracted as a sample for further analysis. Cuts are made in the substrate to define a sample, and a stress-buffer layer is formed over the region of interest or adjacent to it. An isolating cut is made to separate the portion of the substrate containing the region of interest from the bulk substrate; however, the isolated area remains attached to the stress-buffer layer. An end-effector, such as the probe of a nano-manipulator, is attached to the stress-buffer layer, and the stress-buffer layer is cut to free the sample. The sample may then be attached to a holder by attachment of the stress-buffer layer thereto. Thus the sample is never at the same time connected directly and rigidly to two different objects that may move relatively to one another, creating undesirable stresses in the sample.
    Type: Application
    Filed: July 11, 2015
    Publication date: February 4, 2016
    Applicant: Oxford Instruments Nanotechnology Tools Limited
    Inventors: Rocky Kruger, Gonzalo Amador, Cheryl Hartfield
  • Publication number: 20150318141
    Abstract: A gas injection system for an energetic-beam instrument having a vacuum chamber. The system has a cartridge containing a chemical serving as a source for an output gas to be delivered into the vacuum chamber. The cartridge has a reservoir containing the chemical, which rises to a fill line having a level defined by an amount of the chemical present in the reservoir at a given time. An outlet from the reservoir is coupled to an output passage through an outlet valve and configured so that when the system is tilted the outlet remains above the level of the fill line. Embodiments include isolation valves allowing the cartridge to be disconnected without destroying system vacuum.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 5, 2015
    Inventors: Rocky Kruger, Aaron Smith, Cheryl Hartfield
  • Patent number: 9097625
    Abstract: A gas injection system for an energetic-beam instrument having a vacuum chamber. The system has a cartridge containing a chemical serving as a source for an output gas to be delivered into the vacuum chamber. The cartridge has a reservoir containing the chemical, which rises to a fill line having a level defined by an amount of the chemical present in the reservoir at a given time. An outlet from the reservoir is coupled to an output passage through an outlet valve and configured so that when the system is tilted the outlet remains above the level of the fill line. Embodiments include isolation valves allowing the cartridge to be disconnected without destroying system vacuum.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: August 4, 2015
    Assignee: Omniprobe, Inc.
    Inventors: Rocky Kruger, Aaron Smith, Cheryl Hartfield
  • Publication number: 20140014742
    Abstract: A gas injection system for an energetic-beam instrument having a vacuum chamber. The system has a cartridge containing a chemical serving as a source for an output gas to be delivered into the vacuum chamber. The cartridge has a reservoir containing the chemical, which rises to a fill line having a level defined by an amount of the chemical present in the reservoir at a given time. An outlet from the reservoir is coupled to an output passage through an outlet valve and configured so that when the system is tilted the outlet remains above the level of the fill line. Embodiments include isolation valves allowing the cartridge to be disconnected without destroying system vacuum.
    Type: Application
    Filed: April 17, 2013
    Publication date: January 16, 2014
    Applicant: Omniprobe, Inc.
    Inventors: Rocky Kruger, Aaron Smith, Cheryl Hartfield
  • Patent number: 8513622
    Abstract: A method for attaching a frozen specimen to a manipulator probe tip typically inside a charged-particle beam microscope. The method comprises cooling the probe tip to a temperature at or below that of the frozen specimen, where the temperature of the frozen specimen is preferably at or below the vitrification temperature of water; bringing the probe tip into contact with the frozen specimen, and bonding the probe tip to the frozen specimen by flowing water vapor onto the region of contact between the probe tip and the frozen specimen. The bonded probe tip and specimen may be moved to a support structure such as a TEM grid and bonded to it by similar means. The probe tip can then be disconnected by heating the probe tip or applying a charged-particle beam.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: August 20, 2013
    Assignee: Omniprobe, Inc.
    Inventor: Cheryl Hartfield
  • Patent number: 8440969
    Abstract: This disclosure relates to a method and apparatus for producing multiple pixel-by-pixel simultaneous and overlapping images of a sample in a microscope with multiple imaging beams. A scanning electron microscope, a focused ion-beam microscope, or a microscope having both beams, also has an optical microscope. A region of interest on a sample is scanned by both charged-particle and optical beams, either by moving the sample beneath the beams by use of a mechanical stage, or by synchronized scanning of the stationary sample by the imaging beams, or by independently scanning the sample with the imaging beams and recording imaging signals so as to form pixel-by-pixel simultaneous and overlapping images.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: May 14, 2013
    Assignee: Omniprobe, Inc.
    Inventors: Thomas M. Moore, Cheryl Hartfield, Gregory A. Magel
  • Publication number: 20130091875
    Abstract: A method for attaching a frozen specimen to a manipulator probe tip typically inside a charged-particle beam microscope. The method comprises cooling the probe tip to a temperature at or below that of the frozen specimen, where the temperature of the frozen specimen is preferably at or below the vitrification temperature of water; bringing the probe tip into contact with the frozen specimen, and bonding the probe tip to the frozen specimen by flowing water vapor onto the region of contact between the probe tip and the frozen specimen. The bonded probe tip and specimen may be moved to a support structure such as a TEM grid and bonded to it by similar means. The probe tip can then be disconnected by heating the probe tip or applying a charged-particle beam.
    Type: Application
    Filed: April 4, 2012
    Publication date: April 18, 2013
    Applicant: OMNIPROBE, INC.
    Inventor: Cheryl Hartfield
  • Publication number: 20120025075
    Abstract: This disclosure relates to a method and apparatus for producing multiple pixel-by-pixel simultaneous and overlapping images of a sample in a microscope with multiple imaging beams. A scanning electron microscope, a focused ion-beam microscope, or a microscope having both beams, also has an optical microscope. A region of interest on a sample is scanned by both charged-particle and optical beams, either by moving the sample beneath the beams by use of a mechanical stage, or by synchronized scanning of the stationary sample by the imaging beams, or by independently scanning the sample with the imaging beams and recording imaging signals so as to form pixel-by-pixel simultaneous and overlapping images.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 2, 2012
    Applicant: Omniprobe, Inc.
    Inventors: Thomas M. Moore, Cheryl Hartfield, Gregory A. Magel
  • Patent number: 7225681
    Abstract: One embodiment of the invention is a method for evaluating a material such as low-k dielectric, by a stress-generating test tool such as a needle. The evaluation object is shaped as a stack of adhering layers: low-k dielectric, first metal (preferably copper), barrier metal (preferably tantalum nitride), and second metal (preferably aluminum). A numerical correlation is established between a cracking in the barrier metal layer caused by probing and a damage in the layer of insulating material-to-be-tested. A predetermined number of locations of the top metal layer is selected for the probing step comprising touch-down, applying force, and lifting is repeated so that the number of repeats provide a pre-determined statistical confidence level.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: June 5, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Daniel J. Stillman, Nancy R. Ota, Cheryl Hartfield
  • Publication number: 20070051437
    Abstract: In a method and system for evaluating sub-critical fatigue crack growth in a semiconductor device, a plurality of energy pulses generated by an energy source are repeatedly impinged onto the semiconductor device for a predefined time interval. The repeated impinging of the plurality of energy pulses induces a mechanical stress within the semiconductor device. The induced mechanical stress, maintained below a threshold and repeated for a predefined number of cycles, causes a formation of a sub-critical fatigue crack within the semiconductor device. A detector detects the presence of the sub-critical fatigue crack leading to a fatigue failure. A rapid determination of a pass or fail status for a fatigue test of the semiconductor device is made by comparing a total number of cycles to fatigue failure to a predefined benchmark.
    Type: Application
    Filed: August 22, 2005
    Publication date: March 8, 2007
    Applicant: Texas Instruments Incorporated
    Inventors: Cheryl Hartfield, Darvin Edwards
  • Publication number: 20060273780
    Abstract: One embodiment of the invention is a method for evaluating a material such as low-k dielectric, by a stress-generating test tool such as a needle. The evaluation object is shaped as a stack of adhering layers: low-k dielectric, first metal (preferably copper), barrier metal (preferably tantalum nitride), and second metal (preferably aluminum). A numerical correlation is established between a cracking in the barrier metal layer caused by probing and a damage in the layer of insulating material-to-be-tested. A predetermined number of locations of the top metal layer is selected for the probing step comprising touch-down, applying force, and lifting is repeated so that the number of repeats provide a pre-determined statistical confidence level.
    Type: Application
    Filed: June 6, 2005
    Publication date: December 7, 2006
    Inventors: Daniel Stillman, Nancy Ota, Cheryl Hartfield
  • Publication number: 20040115934
    Abstract: A method for improving the electrical resistance of contacts on an integrated circuit. The method includes the steps of first exposing the contacts to a solvent, thereby removing organic contaminants; and then exposing the contacts to ion bombardment, thereby removing inorganic contaminants. The step of exposing the contacts to ion bombardment can remove a portion of the contact. The method may also include a step of oxidizing the pad to produce an oxide layer of a predetermined thickness. The ion bombardment can be carried out in a parallel plate etch tool or by using the RIE tool used to carry out a previous etch step. Another embodiment of the invention is a method of improving the resistance of contacts on an integrated circuit including the steps of: exposing the contacts to ion bombardment in the presence of a fluorine and oxygen plasma, thereby removing inorganic contaminants; and exposing the contacts to a solvent, thereby removing organic contaminants.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Inventors: Jerry Broz, Cheryl Hartfield, Elizabeth R. Kramer, Randy Pak, Hansley Regan Rampersad, Phillip R. Coffman, Sunny K. Lee
  • Patent number: 6435398
    Abstract: A method for reworking integrated circuit (IC) wafers having copper-metallized bond pads covered by deposited layers of a barrier metal and a bondable metal. After identifying the wafers with off-spec metal layers, the wafers are chemically etched using selective etchants consecutively until the metal layers over the bond pads are removed without damaging the copper metallization. Replacement metal layers are finally deposited over the bond pads. Specifically, the bondable metal, such as gold, is selectively removed by a cyclic dithio-oxamine compound, dissolved in tetra-hydro-furane or acetone. The barrier metals, such as nickel and palladium, are removed by a mixture of inorganic and organic oxidizing acids.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: August 20, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Cheryl Hartfield, Thomas M. Moore
  • Patent number: 6420722
    Abstract: When a desired portion is separated from an integrated circuit chip or a semiconductor wafer, the portion is separated so that the resulting sample can be moved to a location for examination by TEM, SEM or other means. A sample portion of the chip or wafer containing an area of interest is separated with a single cut by a focused ion-beam. Prior to separation, the sample is fixed to a micromanipulator probe. The sample is moved by the probe to the location for examination and fixed there. The probe is then detached from the sample by the focused ion-beam.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: July 16, 2002
    Assignee: Omniprobe, Inc.
    Inventors: Thomas M. Moore, Rocky D. Kruger, Cheryl Hartfield
  • Publication number: 20010050303
    Abstract: A method for reworking integrated circuit (IC) wafers having copper-metallized bond pads covered by deposited layers of a barrier metal and a bondable metal. After identifying the wafers with off-spec metal layers, the wafers are chemically etched using selective etchants consecutively until the metal layers over the bond pads are removed without damaging the copper metallization. Replacement metal layers are finally deposited over the bond pads. Specifically, the bondable metal, such as gold, is selectively removed by a cyclic dithio-oxamine compound, dissolved in tetra-hydro-furane or acetone. The barrier metals, such as nickel and palladium, are removed by a mixture of inorganic and organic oxidizing acids.
    Type: Application
    Filed: May 24, 2001
    Publication date: December 13, 2001
    Inventors: Cheryl Hartfield, Thomas M. Moore