Patents by Inventor Chet E. Carter

Chet E. Carter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11937429
    Abstract: Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. A layer over the conductive levels includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus. In some embodiments the vertically-stacked conductive levels are wordline levels within a NAND memory array. Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. Vertically-stacked NAND memory cells are along the conductive levels within a memory array region. A staircase region is proximate the memory array region. The staircase region has electrical contacts in one-to-one correspondence with the conductive levels. A layer is over the memory array region and over the staircase region. The layer includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: March 19, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Fei Wang, Chet E. Carter, Ian Laboriante, John D. Hopkins, Kunal Shrotri, Ryan Meyer, Vinayak Shamanna, Kunal R. Parekh, Martin C. Roberts, Matthew Park
  • Patent number: 11871566
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers above a substrate. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. Catalytic material is formed in a bottom region of individual of the trenches. Metal material is electrolessly deposited onto a catalytic surface of the catalytic material to individually fill at least a majority of remaining volume of the individual trenches. Channel-material strings are formed and extend through the first tiers and the second tiers. Other embodiments, including structure independent of method, are disclosed.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: January 9, 2024
    Inventors: Collin Howder, Chet E. Carter
  • Publication number: 20230413563
    Abstract: A microelectronic device comprises a first set of tiers, each tier of the first set of tiers comprising alternating levels of a conductive material and an insulative material and having a first tier pitch, a second set of tiers adjacent to the first set of tiers, each tier of the second set of tiers comprising alternating levels of the conductive material and the insulative material and having a second tier pitch less than the first tier pitch, a third set of tiers adjacent to the second set of tiers, each tier of the third set of tiers comprising alternating levels of the conductive material and the insulative material and having a third tier pitch less than the second tier pitch, and a string of memory cells extending through the first set of tiers, the second set of tiers, and the third set of tiers. Related microelectronic devices, electronic systems, and methods are also described.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 21, 2023
    Inventors: Yifen Liu, Tecla Ghilardi, George Matamis, Justin D. Shepherdson, Nancy M. Lomeli, Chet E. Carter, Erik R. Byers
  • Publication number: 20230389318
    Abstract: A microelectronic device may include a source structure and a stack structure. The stack structure may include a vertically alternating sequence of insulative structures and conductive structures. Filled slits may extend through the stack structure and into the source structure, the slits dividing the stack structure into multiple blocks. Memory cell pillars may extend through the stack structure and into the source structure, the memory cell pillars and the filled slits terminated at substantially the same depth within the source structure as one another.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 30, 2023
    Inventors: Collin Howder, Justin D. Shepherdson, Chet E. Carter
  • Publication number: 20230337429
    Abstract: A method used in forming a memory array comprises forming a substrate comprising a conductor tier comprising an upper conductor material and a lower conductor material, and a stack comprising vertically-alternating first tiers and second tiers above the conductor tier. Horizontally-elongated trenches are formed through the stack to the upper conductor material and the lower conductor material. At least one of the upper and lower conductor materials have an exposed catalytic surface in the trenches. Metal material is electrolessly deposited onto the catalytic surface to cover the upper conductor material and the lower conductor material within the trenches. Channel-material strings of memory cells are formed and extend through the second tiers and the first tiers. Other embodiments, including structure independent of method, are disclosed.
    Type: Application
    Filed: June 22, 2023
    Publication date: October 19, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Collin Howder, Chet E. Carter
  • Patent number: 11751396
    Abstract: A microelectronic device comprises a first set of tiers, each tier of the first set of tiers comprising alternating levels of a conductive material and an insulative material and having a first tier pitch, a second set of tiers adjacent to the first set of tiers, each tier of the second set of tiers comprising alternating levels of the conductive material and the insulative material and having a second tier pitch less than the first tier pitch, a third set of tiers adjacent to the second set of tiers, each tier of the third set of tiers comprising alternating levels of the conductive material and the insulative material and having a third tier pitch less than the second tier pitch, and a string of memory cells extending through the first set of tiers, the second set of tiers, and the third set of tiers. Related microelectronic devices, electronic systems, and methods are also described.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: September 5, 2023
    Inventors: Yifen Liu, Tecla Ghilardi, George Matamis, Justin D. Shepherdson, Nancy M. Lomeli, Chet E. Carter, Erik R. Byers
  • Patent number: 11737275
    Abstract: A microelectronic device may include a source structure and a stack structure. The stack structure may include a vertically alternating sequence of insulative structures and conductive structures. Filled slits may extend through the stack structure and into the source structure, the slits dividing the stack structure into multiple blocks. Memory cell pillars may extend through the stack structure and into the source structure, the memory cell pillars and the filled slits terminated at substantially the same depth within the source structure as one another.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: August 22, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Collin Howder, Justin D. Shepherdson, Chet E. Carter
  • Patent number: 11737278
    Abstract: A method used in forming a memory array comprises forming a substrate comprising a conductor tier comprising an upper conductor material and a lower conductor material, and a stack comprising vertically-alternating first tiers and second tiers above the conductor tier. Horizontally-elongated trenches are formed through the stack to the upper conductor material and the lower conductor material. At least one of the upper and lower conductor materials have an exposed catalytic surface in the trenches. Metal material is electrolessly deposited onto the catalytic surface to cover the upper conductor material and the lower conductor material within the trenches. Channel-material strings of memory cells are formed and extend through the second tiers and the first tiers. Other embodiments, including structure independent of method, are disclosed.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: August 22, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Collin Howder, Chet E. Carter
  • Patent number: 11705385
    Abstract: A method used in forming a memory array and conductive through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. A mask is formed comprising horizontally-elongated trench openings and operative TAV openings above the stack. Etching is conducted of unmasked portions of the stack through the trench and operative TAV openings in the mask to form horizontally-elongated trench openings in the stack and to form operative TAV openings in the stack. Conductive material is formed in the operative TAV openings in the stack to form individual operative TAVs in individual of the operative TAV openings in the stack. A wordline-intervening structure is formed in individual of the trench openings in the stack.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: July 18, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Indra V. Chary, Chet E. Carter, Anilkumar Chandolu, Justin B. Dorhout, Jun Fang, Matthew J. King, Brett D. Lowe, Matthew Park, Justin D. Shepherdson
  • Publication number: 20230209822
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Patent number: 11631684
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: April 18, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Publication number: 20230062403
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers above a conductor tier. Strings of memory cells comprise channel-material strings that extend through the insulative tiers and the conductive tiers. The channel-material strings directly electrically couple with conductor material of the conductor tier by conducting material that is in a lowest of the conductive tiers and that is directly against multiple of the channel-material strings. A through-array-via (TAV) region comprises TAVs that individually extend through the lowest conductive tier and into the conductor tier. Individual of the TAVs in the lowest conductive tier comprise a conductive core having an annulus circumferentially there-about. The annulus has dopant therein at a total dopant concentration of 0.01 to 30 atomic percent.
    Type: Application
    Filed: October 22, 2021
    Publication date: March 2, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Alyssa N. Scarbrough, John D. Hopkins, Chet E. Carter, Justin D. Shepherdson, Collin Howder, Joshua Wolanyk
  • Publication number: 20230057852
    Abstract: Integrated circuitry comprising a memory array comprises strings of memory cells comprising laterally-spaced memory blocks individually comprising a first vertical stack comprising alternating insulative tiers and conductive tiers above a conductor tier. Strings of memory cells comprise channel-material strings that extend through the insulative tiers and the conductive tiers. The channel-material strings directly electrically couple with conductor material of the conductor tier. The conductive tiers individually comprise a horizontally-elongated conductive line. A second vertical stack is aside the first vertical stack. The second vertical stack comprises an upper portion and a lower portion. The upper portion comprises vertically-alternating first insulating tiers and second insulating tiers that are of different insulative compositions relative one another.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Collin Howder, M. Jared Barclay, Bhavesh Bhartia, Chet E. Carter, John D. Hopkins, Andrew Li, Haoyu Li, Alyssa N. Scarbrough, Grady S. Waldo
  • Publication number: 20220336485
    Abstract: A microelectronic device may include a source structure and a stack structure. The stack structure may include a vertically alternating sequence of insulative structures and conductive structures. Filled slits may extend through the stack structure and into the source structure, the slits dividing the stack structure into multiple blocks. Memory cell pillars may extend through the stack structure and into the source structure, the memory cell pillars and the filled slits terminated at substantially the same depth within the source structure as one another.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Collin Howder, Justin D. Shepherdson, Chet E. Carter
  • Patent number: 11411015
    Abstract: A method used in forming a memory array comprises forming a substrate comprising a conductor tier comprising upper conductor material, lower metal material, and intervening metal material vertically between the upper conductor material and the lower metal material. The intervening metal material, the upper conductor material, and the lower metal material are of different compositions relative one another. The intervening metal material has a reduction potential that is less than 0.7V away from the reduction potential of the upper conductor material. A stack comprising vertically-alternating insulative tiers and conductive tiers is formed above the conductor tier. Channel material is formed through the insulative tiers and the conductive tiers. Horizontally-elongated trenches are formed through the stack to the conductor tier. Elevationally-extending strings of memory cells are formed in the stack.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: August 9, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Collin Howder, Chet E. Carter
  • Publication number: 20220231046
    Abstract: A method used in forming a memory array comprises forming a substrate comprising a conductor tier comprising an upper conductor material and a lower conductor material, and a stack comprising vertically-alternating first tiers and second tiers above the conductor tier. Horizontally-elongated trenches are formed through the stack to the upper conductor material and the lower conductor material. At least one of the upper and lower conductor materials have an exposed catalytic surface in the trenches. Metal material is electrolessly deposited onto the catalytic surface to cover the upper conductor material and the lower conductor material within the trenches. Channel-material strings of memory cells are formed and extend through the second tiers and the first tiers. Other embodiments, including structure independent of method, are disclosed.
    Type: Application
    Filed: April 6, 2022
    Publication date: July 21, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Collin Howder, Chet E. Carter
  • Publication number: 20220199645
    Abstract: Some embodiments include a method of forming an assembly (e.g., a memory array). A first opening is formed through a stack of alternating first and second levels. The first levels contain silicon nitride, and the second levels contain silicon dioxide. Some of the silicon dioxide of the second levels is replaced with memory cell structures. The memory cell structures include charge-storage regions adjacent charge-blocking regions. Tunneling material is formed within the first opening, and channel material is formed adjacent the tunneling material. A second opening is formed through the stack. The second opening extends through remaining portions of the silicon dioxide, and through the silicon nitride. The remaining portions of the silicon dioxide are removed to form cavities. Conductive regions are formed within the cavities. The silicon nitride is removed to form voids between the conductive regions. Some embodiments include memory arrays.
    Type: Application
    Filed: March 10, 2022
    Publication date: June 23, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Changhan Kim, Chet E. Carter, Cole Smith, Collin Howder, Richard J. Hill, Jie Li
  • Publication number: 20220157843
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers above a substrate. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. Catalytic material is formed in a bottom region of individual of the trenches. Metal material is electrolessly deposited onto a catalytic surface of the catalytic material to individually fill at least a majority of remaining volume of the individual trenches. Channel-material strings are formed and extend through the first tiers and the second tiers. Other embodiments, including structure independent of method, are disclosed.
    Type: Application
    Filed: February 1, 2022
    Publication date: May 19, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Collin Howder, Chet E. Carter
  • Patent number: 11335694
    Abstract: A method used in forming a memory array comprises forming a substrate comprising a conductor tier comprising an upper conductor material and a lower conductor material, and a stack comprising vertically-alternating first tiers and second tiers above the conductor tier. Horizontally-elongated trenches are formed through the stack to the upper conductor material and the lower conductor material. At least one of the upper and lower conductor materials have an exposed catalytic surface in the trenches. Metal material is electrolessly deposited onto the catalytic surface to cover the upper conductor material and the lower conductor material within the trenches. Channel-material strings of memory cells are formed and extend through the second tiers and the first tiers. Other embodiments, including structure independent of method, are disclosed.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: May 17, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Collin Howder, Chet E. Carter
  • Publication number: 20220139958
    Abstract: A microelectronic device comprises a first set of tiers, each tier of the first set of tiers comprising alternating levels of a conductive material and an insulative material and having a first tier pitch, a second set of tiers adjacent to the first set of tiers, each tier of the second set of tiers comprising alternating levels of the conductive material and the insulative material and having a second tier pitch less than the first tier pitch, a third set of tiers adjacent to the second set of tiers, each tier of the third set of tiers comprising alternating levels of the conductive material and the insulative material and having a third tier pitch less than the second tier pitch, and a string of memory cells extending through the first set of tiers, the second set of tiers, and the third set of tiers. Related microelectronic devices, electronic systems, and methods are also described.
    Type: Application
    Filed: January 20, 2022
    Publication date: May 5, 2022
    Inventors: Yifen Liu, Tecla Ghilardi, George Matamis, Justin D. Shepherdson, Nancy M. Lomeli, Chet E. Carter, Erik R. Byers