Patents by Inventor Chetan Bettegowda

Chetan Bettegowda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12054781
    Abstract: As cell-free DNA from brain and spinal cord tumors cannot usually be detected in the blood, we assessed the cerebrospinal fluid (CSF) that bathes the CNS for tumor DNA, here termed CSF-tDNA. The results suggest that CSF-tDNA could be useful for the management of patients with primary tumors of the brain or spinal cord.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: August 6, 2024
    Assignee: The Johns Hopkins University
    Inventors: Chetan Bettegowda, Kenneth W. Kinzler, Bert Vogelstein, Yuxuan Wang, Luis Diaz, Nickolas Papadopoulos
  • Publication number: 20230250483
    Abstract: The recently developed liquid-based Papanicolaou (Pap) smear allows not only cytologic evaluation but also collection of DNA for detection of HPV, the causative agent of cervical cancer. We tested these samples to detect somatic mutations present in rare tumor cells that might accumulate in the cervix once shed from endometrial and ovarian cancers. A panel of commonly mutated genes in endometrial and ovarian cancers was assembled and used to identify mutations in all 46 endometrial or cervical cancer tissue samples. We were able also able to identify the same mutations in the DNA from liquid Pap smears in 100% of endometrial cancers (24 of 24) and in 41% of ovarian cancers (9 of 22). We developed a sequence-based method to query mutations in 12 genes in a single liquid Pap smear without prior knowledge of the tumor's genotype.
    Type: Application
    Filed: October 28, 2022
    Publication date: August 10, 2023
    Inventors: Isaac Kinde, Kenneth W. Kinzler, Bert Vogelstein, Nickolas Papadopoulos, Luis Diaz, Chetan Bettegowda, Yuxuan Wang
  • Patent number: 11525163
    Abstract: The recently developed liquid-based Papanicolaou (Pap) smear allows not only cytologic evaluation but also collection of DNA for detection of HPV, the causative agent of cervical cancer. We tested these samples to detect somatic mutations present in rare tumor cells that might accumulate in the cervix once shed from endometrial and ovarian cancers. A panel of commonly mutated genes in endometrial and ovarian cancers was assembled and used to identify mutations in all 46 endometrial or cervical cancer tissue samples. We were able also able to identify the same mutations in the DNA from liquid Pap smears in 100% of endometrial cancers (24 of 24) and in 41% of ovarian cancers (9 of 22). We developed a sequence-based method to query mutations in 12 genes in a single liquid Pap smear without prior knowledge of the tumor's genotype.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: December 13, 2022
    Assignee: The Johns Hopkins University
    Inventors: Isaac Kinde, Kenneth W. Kinzler, Bert Vogelstein, Nickolas Papadopoulos, Luis Diaz, Chetan Bettegowda, Yuxuan Wang
  • Patent number: 11306364
    Abstract: We surveyed 1,230 tumors of 60 different types and found that tumors could be divided into types with low (<15%) and high (?15%) frequencies of TERT promoter mutations. The nine TERT-high tumor types almost always originated in tissues with relatively low rates of self renewal, including melanomas, liposarcomas, hepatocellular carcinomas, urothelial carcinomas, squamous cell carcinomas of the tongue, medulloblastomas, and subtypes of gliomas (including 83% of primary glioblastoma, the most common brain tumor type). TERT and ATRX mutations were mutually exclusive, suggesting that these two genetic mechanisms confer equivalent selective growth advantages. In addition to their implications for understanding the relationship between telomeres and tumorigenesis, TERT mutations provide a biomarker for the early detection of urinary tract and liver tumors and aid in the classification and prognostication of brain tumors.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: April 19, 2022
    Assignees: Duke University, The Johns Hopkins University
    Inventors: Hai Yan, Bert Vogelstein, Nickolas Papadopoulos, Kenneth W. Kinzler, Yuchen Jiao, Chetan Bettegowda, Darell D. Bigner, Zachary J. Reitman, Patrick J. Killela
  • Publication number: 20200399708
    Abstract: We surveyed 1,230 tumors of 60 different types and found that tumors could be divided into types with low (<15%) and high (?15%) frequencies of TERT promoter mutations. The nine TERT-high tumor types almost always originated in tissues with relatively low rates of self renewal, including melanomas, liposarcomas, hepatocellular carcinomas, urothelial carcinomas, squamous cell carcinomas of the tongue, medulloblastomas, and subtypes of gliomas (including 83% of primary glioblastoma, the most common brain tumor type). TERT and ATRX mutations were mutually exclusive, suggesting that these two genetic mechanisms confer equivalent selective growth advantages. In addition to their implications for understanding the relationship between telomeres and tumorigenesis, TERT mutations provide a biomarker for the early detection of urinary tract and liver tumors and aid in the classification and prognostication of brain tumors.
    Type: Application
    Filed: July 14, 2020
    Publication date: December 24, 2020
    Applicants: Duke University, The Johns Hopkins University
    Inventors: Hai Yan, Bert Vogelstein, Nickolas Papadopoulos, Kenneth W. Kinzler, Yuchen Jiao, Chetan Bettegowda, Darell D. Bigner, Zachary J. Reitman, Patrick J. Killela
  • Patent number: 10711310
    Abstract: We surveyed 1,230 tumors of 60 different types and found that tumors could be divided into types with low (<15%) and high (?15%) frequencies of TERT promoter mutations. The nine TERT-high tumor types almost always originated in tissues with relatively low rates of self renewal, including melanomas, liposarcomas, hepatocellular carcinomas, urothelial carcinomas, squamous cell carcinomas of the tongue, medulloblastomas, and subtypes of gliomas (including 83% of primary glioblastoma, the most common brain tumor type). TERT and ATRX mutations were mutually exclusive, suggesting that these two genetic mechanisms confer equivalent selective growth advantages. In addition to their implications for understanding the relationship between telomeres and tumorigenesis, TERT mutations provide a biomarker for the early detection of urinary tract and liver tumors and aid in the classification and prognostication of brain tumors.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: July 14, 2020
    Assignees: Duke University, The Johns Hopkins University
    Inventors: Hai Yan, Bert Vogelstein, Nickolas Papadopoulos, Kenneth W. Kinzler, Yuchen Jiao, Chetan Bettegowda, Darell D. Bigner, Zachary J. Reitman, Patrick J. Killela
  • Patent number: 10619217
    Abstract: Oligodendrogliomas are the second most common malignant brain tumor in adults. These tumors often contain a chromosomal abnormality involving a pericentromeric fusion of chromosomes 1 and 19, resulting in losses of the entire short arm of the former and the long arm of the latter. To identify the molecular genetic basis for this alteration, we performed exomic sequencing of seven anaplastic oligodendrogliomas with chromosome 1p and 19q losses. Among other changes, we found that that CIC (homolog of the Drosophila gene capicua) on chromosome 19q was somatically mutated in six of the seven cases and that FUBP1 (far upstream element (FUSE) binding protein) on chromosome 1p was somatically mutated in two of the seven cases. Examination of 27 additional oligodendrogliomas revealed 12 and 3 more tumors with mutations of CIC and FUBP1, respectively, 58% of which were predicted to result in truncations of the encoded proteins.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: April 14, 2020
    Assignees: The Johns Hopkins University, Duke University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Chetan Bettegowda, Nishant Agrawal, Nickolas Papadopoulos, Darell Bigner, Hai Yan, Roger McLendon
  • Patent number: 10174384
    Abstract: The present invention relates to the field of cancer. More specifically, the present invention provides methods and compositions for treating cancer and predicting patient survival. In one embodiment, a method comprises (a) obtaining a biological sample from the patient; and (b) detecting hypermethylation of ZMIZ1 using primers that specifically bind to CpG island 139 at the alternative promoter of the ZMIZ1 gene.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: January 8, 2019
    Assignee: The Johns Hopkins University
    Inventors: Dimitrios Mathios, Michael Lim, Patrick Ha, Chetan Bettegowda, Taeyoung Hwang, Chul-Kee Park
  • Publication number: 20180195132
    Abstract: Oligodendrogliomas are the second most common malignant brain tumor in adults. These tumors often contain a chromosomal abnormality involving a pericentromeric fusion of chromosomes 1 and 19, resulting in losses of the entire short arm of the former and the long arm of the latter. To identify the molecular genetic basis for this alteration, we performed exomic sequencing of seven anaplastic oligodendrogliomas with chromosome 1p and 19q losses. Among other changes, we found that that CIC (homolog of the Drosophila gene capicua) on chromosome 19q was somatically mutated in six of the seven cases and that FUBP1 (far upstream element (FUSE) binding protein) on chromosome 1p was somatically mutated in two of the seven cases. Examination of 27 additional oligodendrogliomas revealed 12 and 3 more tumors with mutations of CIC and FUBP1, respectively, 58% of which were predicted to result in truncations of the encoded proteins.
    Type: Application
    Filed: December 7, 2017
    Publication date: July 12, 2018
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Chetan Bettegowda, Nishant Agrawal, Nickolas Papadopoulos, Darell Bigner, Hai Yan, Roger McLendon
  • Patent number: 9873917
    Abstract: Oligodendrogliomas are the second most common malignant brain tumor in adults. These tumors often contain a chromosomal abnormality involving a pericentromeric fusion of chromosomes 1 and 19, resulting in losses of the entire short arm of the former and the long arm of the latter. To identify the molecular genetic basis for this alteration, we performed exomic sequencing of seven anaplastic oligodendrogliomas with chromosome 1p and 19q losses. Among other changes, we found that that CIC (homolog of the Drosophila gene capicua) on chromosome 19q was somatically mutated in six of the seven cases and that FUBP1 (far upstream element (FUSE) binding protein) on chromosome 1p was somatically mutated in two of the seven cases. Examination of 27 additional oligodendrogliomas revealed 12 and 3 more tumors with mutations of CIC and FUBP1, respectively, 58% of which were predicted to result in truncations of the encoded proteins.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: January 23, 2018
    Assignees: The Johns Hopkins University, Duke University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Chetan Bettegowda, Nishant Agrawal, Nickolas Papadopoulos, Darell Bigner, Hai Yan, Roger McLendon
  • Publication number: 20170056075
    Abstract: The present invention is directed to an innovative pedicle probe that uses a force-sensing electromechanical system coupled with haptic and visual feedback. The probe of the present invention reduces the rate of pedicle screw breaches during spinal fusion surgery. The probe provides an effective guidance system to aid surgeons in detecting and preventing cortical bone breaches, thereby minimizing risk of intraoperative injury to the patient. Moreover, the probe invention decreases surgeon reliance on intraoperative radiation, reducing harmful exposure to both patients and surgeons.
    Type: Application
    Filed: May 6, 2015
    Publication date: March 2, 2017
    Inventors: Anvesh Annadanam, Robert Allen, Chetan Bettegowda, Ravi Gaddipati, Luis Herrera, Bradley Isaacs, Sheng-fu Lo, Eric Xie, Clay Andrews, Adarsha Malla, Erica Schwarz
  • Patent number: 9572843
    Abstract: Current approaches for treating cancer are limited, in part, by the inability of drugs to affect the poorly vascularized regions of tumors. We have found that spores of anaerobic bacteria in combination with agents which interact with microtubules can cause the destruction of both the vascular and avascular compartments of tumors. Two classes of microtubule inhibitors were found to exert markedly different effects. Some agents that inhibited microtubule synthesis, such as vinorelbine, caused rapid, massive hemorrhagic necrosis when used in combination with spores. In contrast, agents that stabilized microtubules, such as the taxane, docetaxel, resulted in slow tumor regressions that killed most neoplastic cells. Remaining cells in the poorly perfused regions of tumors could be eradicated by sporulated bacteria.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: February 21, 2017
    Assignee: The Johns Hopkins University
    Inventors: Long Dang, Chetan Bettegowda, Kenneth W. Kinzler, Bert Vogelstein
  • Publication number: 20160273050
    Abstract: The present invention relates to the field of cancer. More specifically, the present invention provides methods and compositions for treating cancer and predicting patient survival. In one embodiment, a method comprises (a) obtaining a biological sample from the patient; and (b) detecting hypermethylation of ZMIZ1 using primers that specifically bind to CpG island 139 at the alternative promoter of the ZMIZ1 gene.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 22, 2016
    Inventors: Dimitrios Mathios, Michael Lim, Patrick Ha, Chetan Bettegowda, Taeyoung Hwang, Chul-Kee Park
  • Publication number: 20150361507
    Abstract: We surveyed 1,230 tumors of 60 different types and found that tumors could be divided into types with low (<15%) and high (?15%) frequencies of TERT promoter mutations. The nine TERT-high tumor types almost always originated in tissues with relatively low rates of self renewal, including melanomas, liposarcomas, hepatocellular carcinomas, urothelial carcinomas, squamous cell carcinomas of the tongue, medulloblastomas, and subtypes of gliomas (including 83% of primary glioblastoma, the most common brain tumor type). TERT and ATRX mutations were mutually exclusive, suggesting that these two genetic mechanisms confer equivalent selective growth advantages. In addition to their implications for understanding the relationship between telomeres and tumorigenesis, TERT mutations provide a biomarker for the early detection of urinary tract and liver tumors and aid in the classification and prognostication of brain tumors.
    Type: Application
    Filed: February 18, 2014
    Publication date: December 17, 2015
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Hai YAN, Bert VOGELSTEIN, Nickolas PAPADOPOULOS, Kenneth W. KINZLER, Yuchen JIAO, Chetan BETTEGOWDA, Darell D. BIGNER
  • Publication number: 20150292027
    Abstract: The recently developed liquid-based Papanicolaou (Pap) smear allows not only cytologic evaluation but also collection of DNA for detection of HPV, the causative agent of cervical cancer. We tested these samples to detect somatic mutations present in rare tumor cells that might accumulate in the cervix once shed from endometrial and ovarian cancers. A panel of commonly mutated genes in endometrial and ovarian cancers was assembled and used to identify mutations in all 46 endometrial or cervical cancer tissue samples. We were able also able to identify the same mutations in the DNA from liquid Pap smears in 100% of endometrial cancers (24 of 24) and in 41% of ovarian cancers (9 of 22). We developed a sequence-based method to query mutations in 12 genes in a single liquid Pap smear without prior knowledge of the tumor's genotype.
    Type: Application
    Filed: October 17, 2013
    Publication date: October 15, 2015
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Isaac Kinde, Kenneth W. Kinzler, Bert Vogelstein, Nickolas Papadopoulos, Luis Diaz, Chetan Bettegowda, Yuxuan Wang
  • Publication number: 20140328813
    Abstract: Current approaches for treating cancer are limited, in part, by the inability of drugs to affect the poorly vascularized regions of tumors. We have found that spores of anaerobic bacteria in combination with agents which interact with microtubules can cause the destruction of both the vascular and avascular compartments of tumors. Two classes of microtubule inhibitors were found to exert markedly different effects. Some agents that inhibited microtubule synthesis, such as vinorelbine, caused rapid, massive hemorrhagic necrosis when used in combination with spores. In contrast, agents that stabilized microtubules, such as the taxane, docetaxel, resulted in slow tumor regressions that killed most neoplastic cells. Remaining cells in the poorly perfused regions of tumors could be eradicated by sporulated bacteria.
    Type: Application
    Filed: December 16, 2013
    Publication date: November 6, 2014
    Applicant: The Johns Hopkins University
    Inventors: Long DANG, Chetan BETTEGOWDA, Kenneth W. KINZLER, Bert VOGELSTEIN
  • Publication number: 20140228248
    Abstract: The present invention provides, inter alia, methods for detecting whether a subject has an infection. These methods include (a) incubating a test sample from a subject suspected of having an infection with a labeled molecule, such as a labeled nucleoside analog, that is preferentially incorporated into a pathogenic microorganism for a period of time sufficient for the pathogenic microorganism to incorporate the labeled molecule; (b) removing any unincorporated labeled molecule from the test sample; and (c) detecting the labeled molecule within the pathogenic microorganism, if any, in the test sample, wherein the presence of labeled molecule within the pathogenic microorganism indicates that the subject has an infection.
    Type: Application
    Filed: September 24, 2012
    Publication date: August 14, 2014
    Applicant: BIOMED VALLEY DISCOVERIES, INC.
    Inventors: Saurabh Saha, Chetan Bettegowda, David Tung
  • Publication number: 20140221219
    Abstract: Oligodendrogliomas are the second most common malignant brain tumor in adults. These tumors often contain a chromosomal abnormality involving a pericentromeric fusion of chromosomes 1 and 19, resulting in losses of the entire short arm of the former and the long arm of the latter. To identify the molecular genetic basis for this alteration, we performed exomic sequencing of seven anaplastic oligodendrogliomas with chromosome 1p and 19q losses. Among other changes, we found that that CIC (homolog of the Drosophila gene capicua) on chromosome 19q was somatically mutated in six of the seven cases and that FUBP1 (far upstream element (FUSE) binding protein) on chromosome 1p was somatically mutated in two of the seven cases. Examination of 27 additional oligodendrogliomas revealed 12 and 3 more tumors with mutations of CIC and FUBP1, respectively, 58% of which were predicted to result in truncations of the encoded proteins.
    Type: Application
    Filed: July 18, 2012
    Publication date: August 7, 2014
    Applicants: DUKE UNIVERSITY, THE JOHNS HOPKINS UNIVERSITY
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Chetan Bettegowda, Nishant Agrawal, Nickolas Papadopoulos, Darell Bigner, Hai Yan, Roger Mclendon
  • Patent number: 8691186
    Abstract: The instant invention provides a method for diagnosing an infection in a subject by administering to the subject a compound suitable for imaging which binds to a thymidine kinase present in the infecting organism, and obtaining an image of the subject to determine the presence and location of the compound, wherein a localization of the compound is indicative that the subject has an infection.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: April 8, 2014
    Assignee: The Johns Hopkins University
    Inventors: Martin G. Pomper, Chetan Bettegowda, Catherine Foss, Shibin Zhou, Kenneth Kinzler, Bert Vogelstein
  • Patent number: 8613917
    Abstract: Current approaches for treating cancer are limited, in part, by the inability of drugs to affect the poorly vascularized regions of tumors. We have found that spores of anaerobic bacteria in combination with agents which interact with microtubules can cause the destruction of both the vascular and avascular compartments of tumors. Two classes of microtubule inhibitors were found to exert markedly different effects. Some agents that inhibited microtubule synthesis, such as vinorelbine, caused rapid, massive hemorrhagic necrosis when used in combination with spores. In contrast, agents that stabilized microtubules, such as the taxane, docetaxel, resulted in slow tumor regressions that killed most neoplastic cells. Remaining cells in the poorly perfused regions of tumors could be eradicated by sporulated bacteria.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: December 24, 2013
    Assignee: The Johns Hopkins University
    Inventors: Long Dang, Chetan Bettegowda, Kenneth W. Kinzler, Bert Vogelstein