Patents by Inventor Chetan Nayak
Chetan Nayak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11839167Abstract: Apparatus, methods, and systems are disclosed for robust scalable topological quantum computing. Quantum dots are fabricated as van der Waals heterostructures, supporting localized topological phases and non-Abelian anyons (quasiparticles). Large bandgaps provide noise immunity. Three-dot structures include an intermediate quantum dot between two computational quantum dots. With the intermediate quantum dot in an OFF state, quasiparticles at the computational quantum dots can be isolated, with long lifetimes. Alternatively, the intermediate quantum dot can be controlled to decrease the quasiparticle tunneling barrier, enabling fast computing operations. A computationally universal suite of operations includes quasiparticle initialization, braiding, fusion, and readout of fused quasiparticle states, with, optionally, transport or tunable interactions—all topologically protected. Robust qubits can be operated without error correction.Type: GrantFiled: December 28, 2020Date of Patent: December 5, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Parsa Bonderson, Chetan Nayak, David Reilly, Andrea Franchini Young, Michael Zaletel
-
Publication number: 20230309418Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.Type: ApplicationFiled: May 5, 2023Publication date: September 28, 2023Applicant: Microsoft Technology Licensing, LLCInventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
-
Patent number: 11751493Abstract: Apparatus, methods, and systems are disclosed for robust scalable topological quantum computing. Quantum dots are fabricated as van der Waals heterostructures, supporting localized topological phases and non-Abelian anyons (quasiparticles). Large bandgaps provide noise immunity. Three-dot structures include an intermediate quantum dot between two computational quantum dots. With the intermediate quantum dot in an OFF state, quasiparticles at the computational quantum dots can be isolated, with long lifetimes. Alternatively, the intermediate quantum dot can be controlled to decrease the quasiparticle tunneling barrier, enabling fast computing operations. A computationally universal suite of operations includes quasiparticle initialization, braiding, fusion, and readout of fused quasiparticle states, with, optionally, transport or tunable interactions—all topologically protected. Robust qubits can be operated without error correction.Type: GrantFiled: December 28, 2020Date of Patent: September 5, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Parsa Bonderson, Chetan Nayak, David Reilly, Andrea Franchini Young, Michael Zaletel
-
Patent number: 11696516Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.Type: GrantFiled: September 11, 2020Date of Patent: July 4, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
-
Publication number: 20220069219Abstract: Apparatus, methods, and systems are disclosed for robust scalable topological quantum computing. Quantum dots are fabricated as van der Waals heterostructures, supporting localized topological phases and non-Abelian anyons (quasiparticles). Large bandgaps provide noise immunity. Three-dot structures include an intermediate quantum dot between two computational quantum dots. With the intermediate quantum dot in an OFF state, quasiparticles at the computational quantum dots can be isolated, with long lifetimes. Alternatively, the intermediate quantum dot can be controlled to decrease the quasiparticle tunneling barrier, enabling fast computing operations. A computationally universal suite of operations includes quasiparticle initialization, braiding, fusion, and readout of fused quasiparticle states, with, optionally, transport or tunable interactions—all topologically protected. Robust qubits can be operated without error correction.Type: ApplicationFiled: December 28, 2020Publication date: March 3, 2022Applicant: Microsoft Technology Licensing, LLCInventors: Parsa Bonderson, Chetan Nayak, David Reilly, Andrea Franchini Young, Michael Zaletel
-
Publication number: 20220067563Abstract: Apparatus, methods, and systems are disclosed for robust scalable topological quantum computing. Quantum dots are fabricated as van der Waals heterostructures, supporting localized topological phases and non-Abelian anyons (quasiparticles). Large bandgaps provide noise immunity. Three-dot structures include an intermediate quantum dot between two computational quantum dots. With the intermediate quantum dot in an OFF state, quasiparticles at the computational quantum dots can be isolated, with long lifetimes. Alternatively, the intermediate quantum dot can be controlled to decrease the quasiparticle tunneling barrier, enabling fast computing operations. A computationally universal suite of operations includes quasiparticle initialization, braiding, fusion, and readout of fused quasiparticle states, with, optionally, transport or tunable interactions—all topologically protected. Robust qubits can be operated without error correction.Type: ApplicationFiled: December 28, 2020Publication date: March 3, 2022Applicant: Microsoft Technology Licensing, LLCInventors: Parsa Bonderson, Chetan Nayak, David Reilly, Andrea Franchini Young, Michael Zaletel
-
Publication number: 20210005661Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.Type: ApplicationFiled: September 11, 2020Publication date: January 7, 2021Applicant: Microsoft Technology Licensing, LLCInventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
-
Patent number: 10777605Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological obit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing, architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.Type: GrantFiled: November 11, 2019Date of Patent: September 15, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
-
Patent number: 10692010Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.Type: GrantFiled: September 3, 2018Date of Patent: June 23, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
-
Patent number: 10679138Abstract: A fusion outcome quasiparticle may be trapped in a potential well of a topological segment. The fusion outcome quasiparticle may be the product of fusion of a first quasiparticle and a second quasiparticle, where the first and the second quasiparticles are localized at ends of a topological segment. The potential well having the fusion outcome quasiparticle trapped therein and a third quasiparticle may be moved relative to each other such that the potential well and the third quasiparticle are brought toward each other. The quasiparticles may be Majorana modes of a nanowire.Type: GrantFiled: June 23, 2017Date of Patent: June 9, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Michael H. Freedman, Zhenghan Wang, Roman M. Lutchyn, Chetan Nayak, Parsa Bonderson
-
Patent number: 10665701Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.Type: GrantFiled: September 3, 2018Date of Patent: May 26, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekėnas
-
Patent number: 10635988Abstract: Embodiments of the disclosed technology comprise methods and/or devices for performing measurements and/or manipulations of the collective state of a set of Majorana quasiparticles/Majorana zero modes (MZMs). Example methods/devices utilize the shift of the combined energy levels due to coupling multiple quantum systems (e.g., in a Stark-effect-like fashion). The example methods can be used for performing measurements of the collective topological charge or fermion parity of a group of MZMs (e.g., a pair of MZMs or a group of 4 MZMs). The example devices can be utilized in any system supporting MZMs.Type: GrantFiled: June 27, 2017Date of Patent: April 28, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Roman Lutchyn, Parsa Bonderson, Michael Freedman, Torsten Karzig, Chetan Nayak, Jason Alicea, Christina Knapp
-
Publication number: 20200098821Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological obit comprising 6 Majorana zero modes (MZMs) on a mesoscopic super-conducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing, architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.Type: ApplicationFiled: November 11, 2019Publication date: March 26, 2020Applicant: Microsoft Technology Licensing, LLCInventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
-
Publication number: 20200027971Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.Type: ApplicationFiled: September 3, 2018Publication date: January 23, 2020Applicant: Microsoft Technology Licensing, LLCInventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
-
Publication number: 20200027030Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.Type: ApplicationFiled: September 3, 2018Publication date: January 23, 2020Applicant: Microsoft Technology Licensing, LLCInventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
-
Patent number: 10490600Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.Type: GrantFiled: June 28, 2017Date of Patent: November 26, 2019Assignee: Microsoft Technology Licensing, LLCInventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
-
Patent number: 10346348Abstract: Among the embodiments disclosed herein are example methods for generating all Clifford gates for a system of Majorana Tetron qubits (quasiparticle poisoning protected) given the ability to perform certain 4 Majorana zero mode measurements. Also disclosed herein are example designs for scalable quantum computing architectures that enable the methods for generating the Clifford gates, as well as other operations on the states of MZMs. These designs are configured in such a way as to allow the generation of all the Clifford gates with topological protection and non-Clifford gates (e.g. a ?/8-phase gate) without topological protection, thereby producing a computationally universal gate set. Several possible realizations of these architectures are disclosed.Type: GrantFiled: June 28, 2017Date of Patent: July 9, 2019Assignee: Microsoft Technology Licensing, LLCInventors: Matthew Hastings, Torsten Karzig, Parsa Bonderson, Michael Freedman, Roman Lutchyn, Chetan Nayak
-
Patent number: 10204305Abstract: Measurement-only topological quantum computation using both projective and interferometrical measurement of topological charge is described. Various issues that would arise when realizing it in fractional quantum Hall systems are discussed.Type: GrantFiled: December 12, 2016Date of Patent: February 12, 2019Assignee: Microsoft Technology Licensing, LLCInventors: Michael Freedman, Chetan Nayak, Parsa Bonderson
-
Publication number: 20180052806Abstract: Among the embodiments disclosed herein are example methods for generating all Clifford gates for a system of Majorana Tetron qubits (quasiparticle poisoning protected) given the ability to perform certain 4 Majorana zero mode measurements. Also disclosed herein are example designs for scalable quantum computing architectures that enable the methods for generating the Clifford gates, as well as other operations on the states of MZMs. These designs are configured in such a way as to allow the generation of all the Clifford gates with topological protection and non-Clifford gates (e.g. a ?/8-phase gate) without topological protection, thereby producing a computationally universal gate set. Several possible realizations of these architectures are disclosed.Type: ApplicationFiled: June 28, 2017Publication date: February 22, 2018Applicant: Microsof Technology Licensing, LLCInventors: Matthew Hastings, Torsten Karzig, Parsa Bonderson, Michael Freedman, Roman Lutchyn, Chetan Nayak
-
Publication number: 20180053809Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.Type: ApplicationFiled: June 28, 2017Publication date: February 22, 2018Applicant: Microsoft Technology Licensing, LLCInventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson