Patents by Inventor Chethan Swamynathan

Chethan Swamynathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10141297
    Abstract: An integrated device that includes a substrate, a device level layer formed over the substrate, and interconnect portion over the device level layer. The device level layer includes a plurality of first device level cells, each first device level cell comprising a first configuration. The device level layer includes a plurality of second device level cells. At least one second device level cell includes a second configuration that is different than the first configuration. The plurality of second device level cells is located over at least one region of the integrated device comprising at least one hotspot.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: November 27, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Palkesh Jain, Mehdi Saeidi, Jon James Anderson, Chethan Swamynathan, Richard Wunderlich
  • Patent number: 9024658
    Abstract: Techniques for reducing scan overhead in a scannable flop tray are described herein. In one embodiment, a scan circuit for a flop tray comprises a tri-state circuit configured to invert an input data signal and output the inverted data signal to an input of a flip-flop of the flop tray in a normal mode, and to block the data signal from the input of the flip-flop in a scan mode. The scan circuit also comprises a pass gate configured to pass a scan signal to the input of the flip-flop in the scan mode, and to block the scan signal from the input of the flip-flop in the normal mode.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: May 5, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Madhukar Shah, Chethan Swamynathan, Animesh Datta
  • Publication number: 20140359385
    Abstract: Techniques for reducing scan overhead in a scannable flop tray are described herein. In one embodiment, a scan circuit for a flop tray comprises a tri-state circuit configured to invert an input data signal and output the inverted data signal to an input of a flip-flop of the flop tray in a normal mode, and to block the data signal from the input of the flip-flop in a scan mode. The scan circuit also comprises a pass gate configured to pass a scan signal to the input of the flip-flop in the scan mode, and to block the scan signal from the input of the flip-flop in the normal mode.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Jay Madhukar Shah, Chethan Swamynathan, Animesh Datta
  • Patent number: 8610176
    Abstract: An apparatus fabricated using a standard cell architecture including devices having different voltage thresholds may include a first set of polylines associated with a first channel length, where each polyline within the first set of polylines is separated by a substantially constant pitch. The apparatus may further include a second set of polylines associated with a second channel length and aligned with the first set of polylines, where each polyline within the second set of polylines is laterally separated by the substantially constant pitch. The apparatus may further include a first active region below the first set of polylines, and a second active region below the second set of polylines, where the first active region and the second active region are separated by a distance of less than 170 nm.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 17, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Prayag B. Patel, Pratyush Kamal, Foua Vang, Chock H. Gan, Pr Chidambaram, Chethan Swamynathan
  • Publication number: 20130032885
    Abstract: Gridded polysilicon semiconductor layouts implement double poly patterning to cut polylines of the layout into polyline segments. Devices are arranged on the polyline segments of a common polyline to reduce the area used to implement a circuit structure relative to conventional gridded polysilicon layout. Stacking of PMOS and NMOS devices is enabled by using double poly patterning to implement additional cuts which form additional polyline segments. Metal layer routing may connect nodes of separate polyline segments.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 7, 2013
    Applicant: QUALCOMM INCORPORATED
    Inventors: Chethan Swamynathan, Jay Madhukar Shah, Vijayalakshmi Ranganna, Foua Vang, Pratyush Kamal, Prayag B. Patel
  • Publication number: 20120180016
    Abstract: An apparatus fabricated using a standard cell architecture including devices having different voltage thresholds may include a first set of polylines associated with a first channel length, where each polyline within the first set of polylines is separated by a substantially constant pitch. The apparatus may further include a second set of polylines associated with a second channel length and aligned with the first set of polylines, where each polyline within the second set of polylines is laterally separated by the substantially constant pitch. The apparatus may further include a first active region below the first set of polylines, and a second active region below the second set of polylines, where the first active region and the second active region are separated by a distance of less than 170 nm.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 12, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: PR Chidambaram, Prayag B. Patel, Foua Vang, Pratyush Kamal, Chock H Gan, Chethan Swamynathan