Patents by Inventor Chi-Chieh Wu

Chi-Chieh Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964881
    Abstract: A method for making iridium oxide nanoparticles includes dissolving an iridium salt to obtain a salt-containing solution, mixing a complexing agent with the salt-containing solution to obtain a blend solution, and adding an oxidating agent to the blend solution to obtain a product mixture. A molar ratio of a complexing compound of the complexing agent to the iridium salt is controlled in a predetermined range so as to permit the product mixture to include iridium oxide nanoparticles.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 23, 2024
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Pu-Wei Wu, Yi-Chieh Hsieh, Han-Yi Wang, Kuang-Chih Tso, Tzu-Ying Chan, Chung-Kai Chang, Chi-Shih Chen, Yu-Ting Cheng
  • Patent number: 11923252
    Abstract: A semiconductor device includes a first set of nanostructures stacked over a substrate in a vertical direction, and each of the first set of nanostructures includes a first end portion and a second end portion, and a first middle portion laterally between the first end portion and the second end portion. The first end portion and the second end portion are thicker than the first middle portion. The semiconductor device also includes a first plurality of semiconductor capping layers around the first middle portions of the first set of nanostructures, and a gate structure around the first plurality of semiconductor capping layers.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sai-Hooi Yeong, Bo-Feng Young, Chi-On Chui, Chih-Chieh Yeh, Cheng-Hsien Wu, Chih-Sheng Chang, Tzu-Chiang Chen, I-Sheng Chen
  • Patent number: 10870236
    Abstract: A printing module and a 3D printing apparatus including a frame having a printing area and a standby area and a control module are provided. The printing module includes a carriage assembly disposed on the frame and electrically connected to the control module, a first base disposed on the carriage assembly and having a first latch movably disposed along a first axial direction, a fixing frame disposed in the standby area and having a first stopping portion and a second stopping portion arranged along the first axial direction, a second base movably disposed in the standby area along the first axial direction and located between the first stopping portion and the second stopping portion and having a second latch movably disposed along the first axial direction, and a printing head assembly having a first latching portion and a second latching portion disposed along a second axial direction.
    Type: Grant
    Filed: January 14, 2018
    Date of Patent: December 22, 2020
    Assignees: XYZprinting, Inc., Kinpo Electronics, Inc.
    Inventor: Chi-Chieh Wu
  • Patent number: 10780638
    Abstract: A platform structure of 3D printer includes a movable platform (1), a work carrier (2), an electromagnet (3) and a positioning structure (4). Either of the movable platform (1) and the work carrier (2) has a magnetically attractable portion (20). The electromagnet (3) is installed on another of the movable platform (1) and the work carrier (2) and is capable of magnetically attracting the MAP (20) to make the work carrier (2) removably connect to the movable platform (1). The positioning structure (4) includes a first positioning portion (41) formed on the movable platform (1) and a second positioning portion (42) formed on the work carrier (2). The first positioning portion (41) and the second positioning portion (42) engage with each other. Thereby, the platform structure (10) is convenient to use and has a function of fast assembling and dissembling the work carrier (2).
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: September 22, 2020
    Assignees: XYZPRINTING, INC., KINPO ELECTRONICS, INC.
    Inventors: Chi-Wen Hsieh, Chi-Chieh Wu
  • Patent number: 10682813
    Abstract: A three-dimensional formation platform includes: a base (100), formed with a pair of guide slots (110); a carrier (200), stacked on the base (100) and clamped between the pair of guide slots (110); an elastic stopping unit (300) and an elastic pushing unit (400), disposed at two ends of the pair of guide slots (110) and abutted against the carrier (200). The elastic stopping unit (300) can be compressed for releasing the carrier (200), the elastic pushing unit (400) can provide an elastic force towards the elastic stopping unit (300), so that the carrier (200) can be displaced in a direction opposite to an installing direction (IN) for being released from the guide slot (110), a flange (210) corresponding to the guide slot (110) is extended from a portion defined at a lateral edge (203/204) of the carrier (200), and the flange (210) is received in the guide slot (110).
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: June 16, 2020
    Assignees: XYZPRINTING, INC., KINPO ELECTRONICS, INC.
    Inventor: Chi-Chieh Wu
  • Patent number: 10576686
    Abstract: A formation platform for a three-dimensional printing device is provided. The formation platform includes a base (100), one or more positioning assemblies (200), a substrate (300), and one or more calibration assemblies (400). The positioning assembly (200) includes a damper (210) and a resilient element (220), the damper (210) is movably disposed at the base (100), and the resilient element (220) is associated with the clamper (210) to push the clamper (210) toward the base (100). The substrate (300) is disposed on the base (100), and a portion of an edge of the substrate (300) is compressed by the damper (210) to fix the substrate on the base (100). The calibration assembly (400) includes a screw rod (410); the screw rod (410) is disposed on the base (100) and in contact with the substrate (300). By the positioning assembly (200) collaborating with the calibration assembly (400), horizontal adjustment of the substrate (300) can be made, and the substrate (300) can be easily installed or removed.
    Type: Grant
    Filed: January 14, 2018
    Date of Patent: March 3, 2020
    Assignees: XYZPRINTING, INC., KINPO ELECTRONICS, INC.
    Inventor: Chi-Chieh Wu
  • Publication number: 20190184636
    Abstract: A printing module and a 3D printing apparatus including a frame having a printing area and a standby area and a control module are provided. The printing module includes a carriage assembly disposed on the frame and electrically connected to the control module, a first base disposed on the carriage assembly and having a first latch movably disposed along a first axial direction, a fixing frame disposed in the standby area and having a first stopping portion and a second stopping portion arranged along the first axial direction, a second base movably disposed in the standby area along the first axial direction and located between the first stopping portion and the second stopping portion and having a second latch movably disposed along the first axial direction, and a printing head assembly having a first latching portion and a second latching portion disposed along a second axial direction.
    Type: Application
    Filed: January 14, 2018
    Publication date: June 20, 2019
    Applicants: XYZprinting, Inc., Kinpo Electronics, Inc.
    Inventor: Chi-Chieh Wu
  • Patent number: 10286645
    Abstract: A three-dimensional printing apparatus and a method of compensating a coordinate offset of a nozzle are provided. The method includes the following. A first nozzle and a second nozzle are controlled to print a testing three-dimensional object on a platform according to a calibration model. The testing three-dimensional object includes a plurality of correlation structures respectively corresponding to a plurality of compensation parameters, and each correlation structure includes a first sub-structure and a second sub-structure. The first sub-structure is formed of a first forming material, and the second sub-structure is formed of a second forming material. Through observing a joint level between the first sub-structure and the second sub-structure of each correlation structure, a best correlation structure, which is used for performing compensation on a printing coordinate of the first nozzle or the second nozzle, is selected from the correlation structures.
    Type: Grant
    Filed: November 16, 2014
    Date of Patent: May 14, 2019
    Assignees: XYZprinting, Inc., Kinpo Electronics, Inc., Cal-Comp Electronics & Communications Company Limited
    Inventors: Yang-Teh Lee, Kwan Ho, Chi-Wen Hsieh, Yu-Chuan Chang, Chi-Chieh Wu
  • Publication number: 20190077078
    Abstract: A platform structure of 3D printer includes a movable platform (1), a work carrier (2), an electromagnet (3) and a positioning structure (4). Either of the movable platform (1) and the work carrier (2) has a magnetically attractable portion (20). The electromagnet (3) is installed on another of the movable platform (1) and the work carrier (2) and is capable of magnetically attracting the MAP (20) to make the work carrier (2) removably connect to the movable platform (1). The positioning structure (4) includes a first positioning portion (41) formed on the movable platform (1) and a second positioning portion (42) formed on the work carrier (2). The first positioning portion (41) and the second positioning portion (42) engage with each other. Thereby, the platform structure (10) is convenient to use and has a function of fast assembling and dissembling the work carrier (2).
    Type: Application
    Filed: November 1, 2017
    Publication date: March 14, 2019
    Inventors: Chi-Wen HSIEH, Chi-Chieh WU
  • Publication number: 20190061244
    Abstract: A three-dimensional formation platform includes: a base (100), formed with a pair of guide slots (110); a carrier (200), stacked on the base (100) and clamped between the pair of guide slots (110); an elastic stopping unit (300) and an elastic pushing unit (400), disposed at two ends of the pair of guide slots (110) and abutted against the carrier (200). The elastic stopping unit (300) can be compressed for releasing the carrier (200), the elastic pushing unit (400) can provide an elastic force towards the elastic stopping unit (300), so that the carrier (200) can be displaced in a direction opposite to an installing direction (IN) for being released from the guide slot (110), a flange (210) corresponding to the guide slot (110) is extended from a portion defined at a lateral edge (203/204) of the carrier (200), and the flange (210) is received in the guide slot (110).
    Type: Application
    Filed: October 4, 2017
    Publication date: February 28, 2019
    Inventor: Chi-Chieh WU
  • Publication number: 20190054692
    Abstract: A formation platform for a three-dimensional printing device is provided. The formation platform includes a base (100), one or more positioning assemblies (200), a substrate (300), and one or more calibration assemblies (400). The positioning assembly (200) includes a damper (210) and a resilient element (220), the damper (210) is movably disposed at the base (100), and the resilient element (220) is associated with the clamper (210) to push the clamper (210) toward the base (100). The substrate (300) is disposed on the base (100), and a portion of an edge of the substrate (300) is compressed by the damper (210) to fix the substrate on the base (100). The calibration assembly (400) includes a screw rod (410); the screw rod (410) is disposed on the base (100) and in contact with the substrate (300). By the positioning assembly (200) collaborating with the calibration assembly (400), horizontal adjustment of the substrate (300) can be made, and the substrate (300) can be easily installed or removed.
    Type: Application
    Filed: January 14, 2018
    Publication date: February 21, 2019
    Inventor: Chi-Chieh WU
  • Publication number: 20180272623
    Abstract: A three-dimensional printing nozzle structure including a heater, a nozzle, a feed tube and a baffle member is provided. The heater has a first through hole. The nozzle is connected to the heater and has a second through hole. The feed tube passes through the first through hole and has a feed channel. The first through hole, the second through hole and the feed channel are aligned with each other. A filament moves along the feed channel to pass through the heater. The heater heats and melts the filament, and the filament that has been melted moves from the feed channel into the second through hole to be extruded. The baffle member is disposed inside the first through hole and located between the feed channel and the second through hole. The baffle member is configured to adjust a degree of communication between the feed channel and the second through hole.
    Type: Application
    Filed: April 25, 2017
    Publication date: September 27, 2018
    Applicants: XYZprinting, Inc., Kinpo Electronics, Inc.
    Inventors: Kwan Ho, Chi-Chieh Wu, Chung-Hsuan Wu
  • Patent number: 9994418
    Abstract: A 3D printing filament feeding apparatus for feeding a filament (10) includes a primary driving wheel (100), a secondary driven wheel (300), a measurement scale rotating disk (400), an optical sensor (500) and a cleaning assembly (600). The primary driving wheel (100) is connected to a power source (200) and driven thereby to rotate. The secondary driven wheel (300) is arranged adjacent to and parallel with the primary driving wheel (100). The measurement scale rotating disk (400) includes scale structures (410) and rotates together with the secondary driven wheel (300). The optical sensor (500) detects the scale structures (410). The cleaning assembly (600) engages with the scale structures (410); wherein the secondary driven wheel (300) engages with the filament (10) and rotates along a driven direction (D) together therewith such that the scale structures (410) passes through the cleaning assembly (600), followed by detection of the optical sensor (500).
    Type: Grant
    Filed: September 3, 2016
    Date of Patent: June 12, 2018
    Assignees: XYZPRINTING, INC., KINPO ELECTRONICS, INC.
    Inventor: Chi-Chieh Wu
  • Publication number: 20170313541
    Abstract: A 3D printing filament feeding apparatus for feeding a filament (10) includes a primary driving wheel (100), a secondary driven wheel (300), a measurement scale rotating disk (400), an optical sensor (500) and a cleaning assembly (600). The primary driving wheel (100) is connected to a power source (200) and driven thereby to rotate. The secondary driven wheel (300) is arranged adjacent to and parallel with the primary driving wheel (100). The measurement scale rotating disk (400) includes scale structures (410) and rotates together with the secondary driven wheel (300). The optical sensor (500) detects the scale structures (410). The cleaning assembly (600) engages with the scale structures (410); wherein the secondary driven wheel (300) engages with the filament (10) and rotates along a driven direction (D) together therewith such that the scale structures (410) passes through the cleaning assembly (600), followed by detection of the optical sensor (500).
    Type: Application
    Filed: September 3, 2016
    Publication date: November 2, 2017
    Inventor: Chi-Chieh WU
  • Patent number: 9550324
    Abstract: A three-dimensional (3D) printing apparatus, a printing calibration board and a three dimensional printing calibration method thereof are provided. The three-dimensional printing apparatus is adapted to spray the printing material. The three-dimensional printing apparatus includes a nozzle module, a printing platform and a control unit. The printing platform has a carrying surface, where the calibration pattern is disposed on the carrying surface. The calibration pattern at least includes a datum path and a first auxiliary path. The control unit controls the nozzle module coupled to the control unit to spray the printing material along the datum path, and the printing speed of the nozzle module is adjusted in response to the width of coverage of the printing material on the calibration pattern.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: January 24, 2017
    Assignees: XYZprinting, Inc., Kinpo Electronics, Inc., Cal-Comp Electronics & Communications Company Limited
    Inventors: Yang-Teh Lee, Chi-Wen Hsieh, Chi-Chieh Wu
  • Patent number: 9521285
    Abstract: A 3D printer includes a machine body, a printing platform, a scanning and driving module, and a scanning and supporting module. The machine body has a bottom plate. The printing platform and the scanning and driving module are disposed on the bottom plate. The printing platform includes a slide track and a movable printing substrate. The scanning and driving module and the slide track are staggeredly disposed such that the scanning and driving module and the slide track do not interfere with the movement of the printing substrate. The scanning and supporting module is detachably combined with the scanning and driving module and is driven by the scanning and driving module.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: December 13, 2016
    Assignees: XYZPRINTING, INC., KINPO ELECTRONICS, INC., CAL-COMP ELECTRONICS & COMMUNICATIONS COMPANY LIMITED
    Inventors: Yang-Teh Lee, Jia-Yi Juang, Jen-Hsiang Liu, Chi-Chieh Wu, Yi-Min Chiu
  • Publication number: 20160352945
    Abstract: A detachable scanning and supporting module of a 3D printer includes a machine body, a printing platform, a scanning and driving module, and a scanning and supporting module. The machine body has a bottom plate. The printing platform and the scanning and driving module are disposed on the bottom plate. The printing platform includes a slide track and a movable printing substrate. The scanning and driving module and the slide track are staggeredly disposed such that the scanning and driving module and the slide track do not interfere with the movement of the printing substrate. The scanning and supporting module is detachably combined with the scanning and driving module and is driven by the scanning and driving module.
    Type: Application
    Filed: July 23, 2015
    Publication date: December 1, 2016
    Inventors: YANG-TEH LEE, JIA-YI JUANG, JEN-HSIANG LIU, CHI-CHIEH WU, YI-MIN CHIU
  • Patent number: 9479667
    Abstract: In an aligning mechanism of a 3D printer scanning device, a scan driving module includes a base and a motor, and the motor has a driving gear. The scan loading module includes a loading table, a turntable, and an engaging gear connected to the turntable, and the loading table has a notch, and the engaging gear is exposed from the notch. The driving gear of the scan driving module and the engaging gear of the scan loading module have a rounded corner or a positioning portion, so that the driving gear is engaged precisely with the engaging gear.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: October 25, 2016
    Assignees: XYZPRINTING, INC., KINPO ELECTRONICS, INC., CAL-COMP ELECTRONICS & COMMUNICATIONS COMPANY LIMITED
    Inventors: Yang-Teh Lee, Jia-Yi Juang, Jen-Hsiang Liu, Chi-Chieh Wu, Yi-Min Chiu
  • Publication number: 20160059491
    Abstract: A three-dimensional printing apparatus and a method of compensating a coordinate offset of a nozzle are provided. The method includes the following. A first nozzle and a second nozzle are controlled to print a testing three-dimensional object on a platform according to a calibration model. The testing three-dimensional object includes a plurality of correlation structures respectively corresponding to a plurality of compensation parameters, and each correlation structure includes a first sub-structure and a second sub-structure. The first sub-structure is formed of a first forming material, and the second sub-structure is formed of a second forming material. Through observing a joint level between the first sub-structure and the second sub-structure of each correlation structure, a best correlation structure, which is used for performing compensation on a printing coordinate of the first nozzle or the second nozzle, is selected from the correlation structures.
    Type: Application
    Filed: November 16, 2014
    Publication date: March 3, 2016
    Inventors: Yang-Teh Lee, Kwan Ho, Chi-Wen Hsieh, Yu-Chuan Chang, Chi-Chieh Wu
  • Publication number: 20150321426
    Abstract: A three-dimensional (3D) printing apparatus, a printing calibration board and a three dimensional printing calibration method thereof are provided. The three-dimensional printing apparatus is adapted to spray the printing material. The three-dimensional printing apparatus includes a nozzle module, a printing platform and a control unit. The printing platform has a carrying surface, where the calibration pattern is disposed on the carrying surface. The calibration pattern at least includes a datum path and a first auxiliary path. The control unit controls the nozzle module coupled to the control unit to spray the printing material along the datum path, and the printing speed of the nozzle module is adjusted in response to the width of coverage of the printing material on the calibration pattern.
    Type: Application
    Filed: July 7, 2014
    Publication date: November 12, 2015
    Inventors: Yang-Teh Lee, Chi-Wen Hsieh, Chi-Chieh Wu