Patents by Inventor Chi-Feng Pai
Chi-Feng Pai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12156479Abstract: A memory device and a manufacturing method thereof are provided. The memory device includes a magnetic tunneling junction (MTJ) and a spin Hall electrode (SHE). The MTJ includes a free layer, a reference layer and a barrier layer lying between the free layer and the reference layer. The SHE is in contact with the MTJ, and configured to convert a charge current to a spin current for programming the MTJ. The SHE is formed of an alloy comprising at least one heavy metal element and at least one light transition metal element. The heavy metal element is selected from metal elements with one or more valence electrons filling in 5d orbitals, and the light transition metal element is selected from transition metal elements with one or more valence electrons partially filling in 3d orbitals.Type: GrantFiled: November 4, 2021Date of Patent: November 26, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Yen-Lin Huang, MingYuan Song, Chien-Min Lee, Shy-Jay Lin, Chi-Feng Pai, Chen-Yu Hu, Chao-Chung Huang, Kuan-Hao Chen, Chia-Chin Tsai, Yu-Fang Chiu, Cheng-Wei Peng
-
Publication number: 20240389472Abstract: A memory device and a manufacturing method thereof are provided. The memory device includes a magnetic tunneling junction (MTJ) and a spin Hall electrode (SHE). The MTJ includes a free layer, a reference layer and a barrier layer lying between the free layer and the reference layer. The SHE is in contact with the MTJ, and configured to convert a charge current to a spin current for programming the MTJ. The SHE is formed of an alloy comprising at least one heavy metal element and at least one light transition metal element. The heavy metal element is selected from metal elements with one or more valence electrons filling in 5 d orbitals, and the light transition metal element is selected from transition metal elements with one or more valence electrons partially filling in 3 d orbitals.Type: ApplicationFiled: July 29, 2024Publication date: November 21, 2024Inventors: Yen-Lin Huang, MingYuan Song, Chien-Min Lee, Shy-Jay Lin, Chi-Feng Pai, Chen-Yu Hu, Chao-Chung Huang, Kuan-Hao Chen, Chia-Chin Tsai, Yu-Fang Chiu, Cheng-Wei Peng
-
Publication number: 20220376170Abstract: A magnetic structure capable of field-free spin-orbit torque switching includes a spin-orbit coupling base layer and a ferromagnetic layer formed thereon. The spin-orbit coupling base layer is made from a particular crystal material. The ferromagnetic layer has magnetization perpendicular to a plane coupled to the spin-orbit coupling base layer, and is made from a particular ferromagnetic material with perpendicular magnetic anisotropy. The perpendicular magnetization of the ferromagnetic layer is switchable by an in plane current applied to the spin-orbit coupling base layer without application of an external magnetic field. A memory device and a production method regarding the magnetic structure are also provided.Type: ApplicationFiled: May 9, 2022Publication date: November 24, 2022Inventors: Chi-Feng PAI, Tian-Yue CHEN, Wei-Bang LIAO
-
Publication number: 20220216396Abstract: A memory device and a manufacturing method thereof are provided. The memory device includes a magnetic tunneling junction (MTJ) and a spin Hall electrode (SHE). The MTJ includes a free layer, a reference layer and a barrier layer lying between the free layer and the reference layer. The SHE is in contact with the MTJ, and configured to convert a charge current to a spin current for programming the MTJ. The SHE is formed of an alloy comprising at least one heavy metal element and at least one light transition metal element. The heavy metal element is selected from metal elements with one or more valence electrons filling in 5d orbitals, and the light transition metal element is selected from transition metal elements with one or more valence electrons partially filling in 3d orbitals.Type: ApplicationFiled: November 4, 2021Publication date: July 7, 2022Inventors: Yen-Lin Huang, MingYuan Song, Chien-Min Lee, Shy-Jay Lin, Chi-Feng Pai, Chen-Yu Hu, Chao-Chung Huang, Kuan-Hao Chen, Chia-Chin Tsai, Yu-Fang Chiu, Cheng-Wei Peng
-
Patent number: 10847197Abstract: Devices or circuits based on spin torque transfer (STT) and Spin Hall effect are disclosed by using a spin Hall effect (SHE) metal layer coupled to a magnetic free layer for various applications. The efficiency or strength of the STT effect based on this combination of SHE and STT can be enhanced by an interface modification between the SHE metal layer and the magnetic free layer or by modifying or engineering the SHE metal layer by doping the SHE metal with certain impurities or other means.Type: GrantFiled: June 25, 2018Date of Patent: November 24, 2020Assignee: Cornell UniversityInventors: Robert A. Buhrman, Minh-hai Nguyen, Chi-feng Pai, Daniel C. Ralph
-
Publication number: 20180308536Abstract: Devices or circuits based on spin torque transfer (STT) and Spin Hall effect are disclosed by using a spin Hall effect (SHE) metal layer coupled to a magnetic free layer for various applications. The efficiency or strength of the STT effect based on this combination of SHE and STT can be enhanced by an interface modification between the SHE metal layer and the magnetic free layer or by modifying or engineering the SHE metal layer by doping the SHE metal with certain impurities or other means.Type: ApplicationFiled: June 25, 2018Publication date: October 25, 2018Inventors: Robert A. Buhrman, Minh-hai Nguyen, Chi-feng Pai, Daniel C. Ralph
-
Patent number: 10008248Abstract: Devices or circuits based on spin torque transfer (STT) and Spin Hall effect are disclosed by using a spin Hall effect (SHE) metal layer coupled to a magnetic free layer for various applications. The efficiency or strength of the STT effect based on this combination of SHE and STT can be enhanced by an interface modification between the SHE metal layer and the magnetic free layer or by modifying or engineering the SHE metal layer by doping the SHE metal with certain impurities or other means.Type: GrantFiled: July 17, 2015Date of Patent: June 26, 2018Assignee: Cornell UniversityInventors: Robert A Buhrman, Minh-hai Nguyen, Chi-feng Pai, Daniel C Ralph
-
Patent number: 9947382Abstract: Three-terminal magnetic circuits and devices based on the spin-transfer torque (STT) effect via a combination of injection of spin-polarized electrons or charged particles by using a charge current in a spin Hall effect metal layer coupled to a free magnetic layer and application of a gate voltage to the free magnetic layer to manipulate the magnetization of the free magnetic layer for various applications, including nonvolatile memory functions, logic functions and others. The charge current is applied to the spin Hall effect metal layer via first and second electrical terminals and the gate voltage is applied between a third electrical terminal and either of the first and second electrical terminals. The spin Hall effect metal layer can be adjacent to the free magnetic layer or in direct contact with the free magnetic layer to allow a spin-polarized current generated via a spin Hall effect under the charge current to enter the free magnetic layer.Type: GrantFiled: November 21, 2016Date of Patent: April 17, 2018Assignee: Cornell UniversityInventors: Robert A Buhrman, Daniel C Ralph, Chi-Feng Pai, Luqiao Liu
-
Publication number: 20170178705Abstract: Devices or circuits based on spin torque transfer (STT) and Spin Hall effect are disclosed by using a spin Hall effect (SHE) metal layer coupled to a magnetic free layer for various applications. The efficiency or strength of the STT effect based on this combination of SHE and STT can be enhanced by an interface modification between the SHE metal layer and the magnetic free layer or by modifying or engineering the SHE metal layer by doping the SHE metal with certain impurities or other means.Type: ApplicationFiled: July 17, 2015Publication date: June 22, 2017Inventors: Robert A Buhrman, Minh-hai Nguyen, Chi-feng Pai, Daniel C Ralph
-
Publication number: 20170069365Abstract: 3-terminal magnetic circuits and devices based on the spin-transfer torque (STT) effect via a combination of injection of spin-polarized electrons or charged particles by using a charge current in a spin Hall effect metal layer coupled to a free magnetic layer and application of a gate voltage to the free magnetic layer to manipulate the magnetization of the free magnetic layer for various applications, including non-volatile memory functions, logic functions and others. The charge current is applied to the spin Hall effect metal layer via first and second electrical terminals and the gate voltage is applied between a third electrical terminal and either of the first and second electrical terminals. The spin Hall effect metal layer can be adjacent to the free magnetic layer or in direct contact with the free magnetic layer to allow a spin-polarized current generated via a spin Hall effect under the charge current to enter the free magnetic layer.Type: ApplicationFiled: November 21, 2016Publication date: March 9, 2017Inventors: Robert A Buhrman, Daniel C Ralph, Chi-Feng Pai, Luqiao Liu
-
Patent number: 9576631Abstract: An ST-MRAM structure, a method for fabricating the ST-MRAM structure and a method for operating an ST-MRAM device that results from the ST-MRAM structure each utilize a spin Hall effect base layer that contacts a magnetic free layer and effects a magnetic moment switching within the magnetic free layer as a result of a lateral switching current within the spin Hall effect base layer. This resulting ST-MRAM device uses an independent sense current and sense voltage through a magnetoresistive stack that includes a pinned layer, a non-magnetic spacer layer and the magnetic free layer which contacts the spin Hall effect base layer. Desirable non-magnetic conductor materials for the spin Hall effect base layer include certain types of tantalum materials and tungsten materials that have a spin diffusion length no greater than about five times the thickness of the spin Hall effect base layer and a spin Hall angle at least about 0.05.Type: GrantFiled: August 10, 2015Date of Patent: February 21, 2017Assignee: Cornell UniversityInventors: Robert A. Buhrman, Luqiao Liu, Daniel C. Ralph, Chi-Feng Pai
-
Patent number: 9502087Abstract: 3-terminal magnetic circuits and devices based on the spin-transfer torque (STT) effect via a combination of injection of spin-polarized electrons or charged particles by using a charge current in a spin Hall effect metal layer coupled to a free magnetic layer and application of a gate voltage to the free magnetic layer to manipulate the magnetization of the free magnetic layer for various applications, including non-volatile memory functions, logic functions and others. The charge current is applied to the spin Hall effect metal layer via first and second electrical terminals and the gate voltage is applied between a third electrical terminal and either of the first and second electrical terminals. The spin Hall effect metal layer can be adjacent to the free magnetic layer or in direct contact with the free magnetic layer to allow a spin-polarized current generated via a spin Hall effect under the charge current to enter the free magnetic layer.Type: GrantFiled: December 31, 2015Date of Patent: November 22, 2016Assignee: CORNELL UNIVERSITYInventors: Robert A. Buhrman, Daniel C. Ralph, Chi-Feng Pai, Luqiao Liu
-
Publication number: 20160196860Abstract: 3-terminal magnetic circuits and devices based on the spin-transfer torque (STT) effect via a combination of injection of spin-polarized electrons or charged particles by using a charge current in a spin Hall effect metal layer coupled to a free magnetic layer and application of a gate voltage to the free magnetic layer to manipulate the magnetization of the free magnetic layer for various applications, including non-volatile memory functions, logic functions and others. The charge current is applied to the spin Hall effect metal layer via first and second electrical terminals and the gate voltage is applied between a third electrical terminal and either of the first and second electrical terminals. The spin Hall effect metal layer can be adjacent to the free magnetic layer or in direct contact with the free magnetic layer to allow a spin-polarized current generated via a spin Hall effect under the charge current to enter the free magnetic layer.Type: ApplicationFiled: December 31, 2015Publication date: July 7, 2016Inventors: Robert A. Buhrman, Daniel C. Ralph, Chi-Feng Pai, Luqiao Liu
-
Patent number: 9230626Abstract: 3-terminal magnetic circuits and devices based on the spin-transfer torque (STT) effect via a combination of injection of spin-polarized electrons or charged particles by using a charge current in a spin Hall effect metal layer coupled to a free magnetic layer and application of a gate voltage to the free magnetic layer to manipulate the magnetization of the free magnetic layer for various applications, including non-volatile memory functions, logic functions and others. The charge current is applied to the spin Hall effect metal layer via first and second electrical terminals and the gate voltage is applied between a third electrical terminal and either of the first and second electrical terminals. The spin Hall effect metal layer can be adjacent to the free magnetic layer or in direct contact with the free magnetic layer to allow a spin-polarized current generated via a spin Hall effect under the charge current to enter the free magnetic layer.Type: GrantFiled: August 6, 2013Date of Patent: January 5, 2016Assignee: CORNELL UNIVERSITYInventors: Robert A. Buhrman, Daniel C. Ralph, Chi-Feng Pai, Luqiao Liu
-
Publication number: 20150348606Abstract: An ST-MRAM structure, a method for fabricating the ST-MRAM structure and a method for operating an ST-MRAM device that results from the ST-MRAM structure each utilize a spin Hall effect base layer that contacts a magnetic free layer and effects a magnetic moment switching within the magnetic free layer as a result of a lateral switching current within the spin Hall effect base layer. This resulting ST-MRAM device uses an independent sense current and sense voltage through a magnetoresistive stack that includes a pinned layer, a non-magnetic spacer layer and the magnetic free layer which contacts the spin Hall effect base layer. Desirable non-magnetic conductor materials for the spin Hall effect base layer include certain types of tantalum materials and tungsten materials that have a spin diffusion length no greater than about five times the thickness of the spin Hall effect base layer and a spin Hall angle at least about 0.05.Type: ApplicationFiled: August 10, 2015Publication date: December 3, 2015Inventors: Robert A. Buhrman, Luqiao Liu, Daniel C. Ralph, Chi-Feng Pai
-
Patent number: 9105832Abstract: An ST-MRAM structure, a method for fabricating the ST-MRAM structure and a method for operating an ST-MRAM device that results from the ST-MRAM structure each utilize a spin Hall effect base layer that contacts a magnetic free layer and effects a magnetic moment switching within the magnetic free layer as a result of a lateral switching current within the spin Hall effect base layer. This resulting ST-MRAM device uses an independent sense current and sense voltage through a magnetoresistive stack that includes a pinned layer, a non-magnetic spacer layer and the magnetic free layer which contacts the spin Hall effect base layer. Desirable non-magnetic conductor materials for the spin Hall effect base layer include certain types of tantalum materials and tungsten materials that have a spin diffusion length no greater than about five times the thickness of the spin Hall effect base layer and a spin Hall angle at least about 0.05.Type: GrantFiled: August 17, 2012Date of Patent: August 11, 2015Assignee: Cornell UniversityInventors: Robert A. Buhrman, Luqiao Liu, Daniel C. Ralph, Chi-Feng Pai
-
Publication number: 20150200003Abstract: 3-terminal magnetic circuits and devices based on the spin-transfer torque (STT) effect via a combination of injection of spin-polarized electrons or charged particles by using a charge current in a spin Hall effect metal layer coupled to a free magnetic layer and application of a gate voltage to the free magnetic layer to manipulate the magnetization of the free magnetic layer for various applications, including non-volatile memory functions, logic functions and others. The charge current is applied to the spin Hall effect metal layer via first and second electrical terminals and the gate voltage is applied between a third electrical terminal and either of the first and second electrical terminals. The spin Hall effect metal layer can be adjacent to the free magnetic layer or in direct contact with the free magnetic layer to allow a spin-polarized current generated via a spin Hall effect under the charge current to enter the free magnetic layer.Type: ApplicationFiled: August 6, 2013Publication date: July 16, 2015Inventors: Robert A. Buhrman, Daniel C. Ralph, Chi-Feng Pai, Luqiao Liu
-
Publication number: 20140169088Abstract: An ST-MRAM structure, a method for fabricating the ST-MRAM structure and a method for operating an ST-MRAM device that results from the ST-MRAM structure each utilize a spin Hall effect base layer that contacts a magnetic free layer and effects a magnetic moment switching within the magnetic free layer as a result of a lateral switching current within the spin Hall effect base layer. This resulting ST-MRAM device uses an independent sense current and sense voltage through a magnetoresistive stack that includes a pinned layer, a non-magnetic spacer layer and the magnetic free layer which contacts the spin Hall effect base layer. Desirable non-magnetic conductor materials for the spin Hall effect base layer include certain types of tantalum materials and tungsten materials that have a spin diffusion length no greater than about five times the thickness of the spin Hall effect base layer and a spin Hall angle at least about 0.05.Type: ApplicationFiled: August 17, 2012Publication date: June 19, 2014Applicant: CORNELL UNIVERSITYInventors: Robert A. Buhrman, Luqiao Liu, Daniel C. Ralph, Chi-Feng Pai