Patents by Inventor Chi-hing Choi

Chi-hing Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105508
    Abstract: Disclosed herein are integrated circuit (IC) devices with contacts using nitridized molybdenum. For example, a contact arrangement for an IC device may include a semiconductor material and a contact extending into a portion of the semiconductor material. The contact may include molybdenum. The molybdenum may be in a first layer and a second layer, where the second layer may further include nitrogen. The first layer may have a thickness between about 5 nanometers and 16 nanometers, and the second layer may have a thickness between about 0.5 nanometers to 2.5 nanometers. The contact may further include a fill material (e.g., an electrically conductive material) and the second layer may be in contact with the fill material. The molybdenum may have a low resistance, and thus may improve the electrical performance of the contact. The nitridized molybdenum may prevent oxidation during the fabrication of the contact.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Jitendra Kumar Jha, Justin Mueller, Nazila Haratipour, Gilbert W. Dewey, Chi-Hing Choi, Jack T. Kavalieros, Siddharth Chouksey, Nancy Zelick, Jean-Philippe Turmaud, I-Cheng Tung, Blake Bluestein
  • Publication number: 20240006533
    Abstract: Contacts to p-type source/drain regions comprise a boride, indium, or gallium metal compound layer. The boride, indium, or gallium metal compound layers can aid in forming thermally stable low resistance contacts. A boride, indium, or gallium metal compound layer is positioned between the source/drain region and the contact metal layer. A boride, indium, or gallium metal compound layer can be used in contacts contacting p-type source/drain regions comprising boron, indium, or gallium as the primary dopant, respectively. The boride, indium, or gallium metal compound layers prevent diffusion of boron, indium, or gallium from the source/drain region into the metal contact layer and dopant deactivation in the source/drain region due to annealing and other high-temperature processing steps that occur after contact formation.
    Type: Application
    Filed: July 2, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Siddharth Chouksey, Nazila Haratipour, Christopher Jezewski, Jitendra Kumar Jha, Ilya V. Karpov, Matthew V. Metz, Arnab Sen Gupta, I-Cheng Tung, Nancy Zelick, Chi-Hing Choi, Dan S. Lavric
  • Publication number: 20240006506
    Abstract: Contacts to n-type source/drain regions comprise a phosphide or arsenide metal compound layer. The phosphide or arsenide metal compound layers can aid in forming thermally stable low resistance contacts. A phosphide or arsenide metal compound layer is positioned between the source/drain region and the contact metal layer of the contact. A phosphide or arsenic metal compound layer can be used in contacts contacting n-type source/drain regions comprising phosphorous or arsenic as the primary dopant, respectively. The phosphide or arsenide metal compound layers prevent diffusion of phosphorous or arsenic from the source/drain region into the metal contact layer and dopant deactivation in the source/drain region due to annealing and other high-temperature processing steps that occur after contact formation.
    Type: Application
    Filed: July 2, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Siddharth Chouksey, Nazila Haratipour, Christopher Jezewski, Jitendra Kumar Jha, Ilya V. Karpov, Jack T. Kavalieros, Arnab Sen Gupta, I-Cheng Tung, Nancy Zelick, Chi-Hing Choi, Dan S. Lavric
  • Publication number: 20240006488
    Abstract: In one embodiment, layers comprising Carbon (e.g., Silicon Carbide) are on source/drain regions of a transistor, e.g., before gate formation and metallization, and the layers comprising Carbon are later removed in the manufacturing process to form electrical contacts on the source/drain regions.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Gilbert Dewey, Nancy Zelick, Siddharth Chouksey, I-Cheng Tung, Arnab Sen Gupta, Jitendra Kumar Jha, David Kohen, Natalie Briggs, Chi-Hing Choi, Matthew V. Metz, Jack T. Kavalieros
  • Publication number: 20240006494
    Abstract: Semiconductor structures having a source and/or drain with a refractory metal cap, and methods of forming the same, are described herein. In one example, a semiconductor structure includes a channel, a gate, a source, and a drain. The source and drain contain silicon and germanium, and one or both of the source and drain are capped with a semiconductor cap and a refractory metal cap. The semiconductor cap is on the source and/or drain and contains germanium and boron. The refractory metal cap is on the semiconductor cap and contains a refractory metal.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Gilbert Dewey, Nancy Zelick, Siddharth Chouksey, I-Cheng Tung, Arnab Sen Gupta, Jitendra Kumar Jha, Chi-Hing Choi, Matthew V. Metz, Jack T. Kavalieros
  • Publication number: 20230420456
    Abstract: Integrated circuit structures having source or drain structures with low resistivity are described. In an example, integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. Each epitaxial structure of the first and second source or drain structures include silicon, germanium, gallium and boron. The first and second source or drain structures have a resistivity less than 2E-9 Ohm cm2.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Debaleena NANDI, Imola ZIGONEANU, Gilbert DEWEY, Anant H. JAHAGIRDAR, Harold W. KENNEL, Pratik PATEL, Anand S. MURTHY, Chi-Hing CHOI, Mauro J. KOBRINSKY, Tahir GHANI
  • Publication number: 20230317789
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having source or drain structures with selective silicide contacts thereon are described. In an example, an integrated circuit structure includes a plurality of stacks of nanowires. A plurality of epitaxial source or drain structures is around ends of corresponding ones of the stacks of nanowires. A silicide layer is on an entirety of a top surface of the plurality of epitaxial source or drain structures. A conductive trench contact is on the silicide layer. A dielectric layer is vertically intervening between a portion of the conductive trench contact and the silicide layer.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Dan S. LAVRIC, Anand S. MURTHY, Cory BOMBERGER, Subrina RAFIQUE, Chi-Hing CHOI, Mohammad HASAN
  • Publication number: 20230197804
    Abstract: Contact over active gate (COAG) structures with trench contact layers, and methods of fabricating contact over active gate (COAG) structures using trench contact layers, are described. In an example, an integrated circuit structure includes a gate structure. An epitaxial source or drain structure is adjacent to the gate structure. A conductive trench contact structure is on the epitaxial source or drain structure. The conductive trench contact structure includes a first planar layer on the epitaxial source or drain structure, a second planar layer on the first planar layer, and a conductive fill material on the second planar layer.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Inventors: Nazila HARATIPOUR, Gilbert DEWEY, I-Cheng TUNG, Nancy ZELICK, Chi-Hing CHOI, Jitendra Kumar JHA, Jack T. KAVALIEROS
  • Publication number: 20230101725
    Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise germanium and boron, and a protective layer comprises silicon, and germanium that at least partially covers the epitaxial source or drain structures. A conductive contact comprising titanium silicide is on the epitaxial source or drain structures.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Debaleena NANDI, Mauro J. KOBRINSKY, Gilbert DEWEY, Chi-hing CHOI, Harold W. Kennel, Brian J. KRIST, Ashkar ALIYARUKUNJU, Cory BOMBERGER, Rushabh SHAH, Rishabh MEHANDRU, Stephen M. CEA, Chanaka MUNASINGHE, Anand S. MURTHY, Tahir GHANI
  • Publication number: 20220416032
    Abstract: Source and drain contacts that provide improved contact resistance and contact interface stability for transistors employing silicon and germanium source and drain materials, related transistor structures, integrated circuits, systems, and methods of fabrication are disclosed. Such source and drain contacts include a contact layer of co-deposited titanium and silicon on the silicon and germanium source and drain. The disclosed source and drain contacts improve transistor performance including switching speed and reliability.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Debaleena Nandi, Chi-Hing Choi, Gilbert Dewey, Harold Kennel, Omair Saadat, Jitendra Kumar Jha, Adedapo Oni, Nazila Haratipour, Anand Murthy, Tahir Ghani
  • Publication number: 20220416050
    Abstract: Embodiments disclosed herein include semiconductor devices with improved contact resistances. In an embodiment, a semiconductor device comprises a semiconductor channel, a gate stack over the semiconductor channel, a source region on a first end of the semiconductor channel, a drain region on a second end of the semiconductor channel, and contacts over the source region and the drain region. In an embodiment, the contacts comprise a silicon germanium layer, an interface layer over the silicon germanium layer, and a titanium layer over the interface layer.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Debaleena NANDI, Cory BOMBERGER, Gilbert DEWEY, Anand S. MURTHY, Mauro KOBRINSKY, Rushabh SHAH, Chi-Hing CHOI, Harold W. KENNEL, Omair SAADAT, Adedapo A. ONI, Nazila HARATIPOUR, Tahir GHANI
  • Publication number: 20220102506
    Abstract: Embodiments disclosed herein include complementary metal-oxide-semiconductor (CMOS) devices and methods of making such devices. In an embodiment, a CMOS device comprises a first transistor with a first conductivity type, where the first transistor comprises a first source region and a first drain region, and a first interface material over the first source region and the first drain region. In an embodiment, the CMOS device further comprises a second transistor with a second conductivity type that is opposite form the first conductivity type, where the second transistor comprises a second source region and a second drain region, and a second interface material over the second source region and the second drain region.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Inventors: Kevin COOK, Anand S. MURTHY, Gilbert DEWEY, Nazila HARATIPOUR, Chi-Hing CHOI, Jitendra Kumar JHA, Srijit MUKHERJEE
  • Patent number: 6746727
    Abstract: A method is described involving depositing a dielectric layer. The surface of the dielectric layer is modified to prevent outdiffusion from the dielectric layer. A metal layer is deposited above the modified surface of the dielectric layer.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: June 8, 2004
    Assignee: Intel Corporation
    Inventors: Jick Yu, Chi Hing Choi
  • Publication number: 20030209805
    Abstract: The present invention is a dielectric film and its method of fabrication. The dielectric film of the present invention includes silicon oxygen fluorine and nitrogen wherein the interlayer dielectric comprises between 0.01-0.1 atomic percent nitrogen.
    Type: Application
    Filed: March 24, 2003
    Publication date: November 13, 2003
    Inventors: Chi-Hing Choi, John Bumgarner, Todd Wilke, Melton Bost
  • Patent number: 6642141
    Abstract: A structure to enable damascene copper semiconductor fabrication is disclosed. There is a silicon nitride film for providing a diffusion barrier for Cu as well as an etch stop for the duel damascene process. Directly above the silicon nitride film is a silicon oxynitride film. The silicon oxynitride film is graded, to form a gradual change in composition of nitrogen and oxygen within the film. Directly above the silicon oxynitride film is silicon oxide. The silicon oxide serves as an insulator for metal lines. Preferably, the film stack of silicon nitride, silicon oxynitride and silicon oxide is all formed in sequence, within the same plasma-processing chamber, by modifying the composition of film-forming gases for forming each film.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: November 4, 2003
    Assignee: Intel Corporation
    Inventors: Preston Smith, Chi-hing Choi
  • Patent number: 6507081
    Abstract: A structure to enable damascene copper semiconductor fabrication is disclosed. There is a silicon nitride film for providing a diffusion barrier for Cu as well as an etch stop for the duel damascene process. Directly above the silicon nitride film is a silicon oxynitride film. The silicon oxynitride film is graded, to form a gradual change in composition of nitrogen and oxygen within the film. Directly above the silicon oxynitride film is silicon oxide. The silicon oxide serves as an insulator for metal lines. Preferably, the film stack of silicon nitride, silicon oxynitride and silicon oxide is all formed in sequence, within the same plasma-processing chamber, by modifying the composition of film-forming gases for forming each film.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: January 14, 2003
    Assignee: Intel Corporation
    Inventors: Preston Smith, Chi-hing Choi
  • Publication number: 20010019175
    Abstract: A structure to enable damascene copper semiconductor fabrication is disclosed. There is a silicon nitride film for providing a diffusion barrier for Cu as well as an etch stop for the duel damascene process. Directly above the silicon nitride film is a silicon oxynitride film. The silicon oxynitride film is graded, to form a gradual change in composition of nitrogen and oxygen within the film. Directly above the silicon oxynitride film is silicon oxide. The silicon oxide serves as an insulator for metal lines. Preferably, the film stack of silicon nitride, silicon oxynitride and silicon oxide is all formed in sequence, within the same plasma-processing chamber, by modifying the composition of film-forming gases for forming each film.
    Type: Application
    Filed: March 9, 2001
    Publication date: September 6, 2001
    Inventors: Preston Smith, Chi-Hing Choi
  • Publication number: 20010016428
    Abstract: A structure to enable damascene copper semiconductor fabrication is disclosed. There is a silicon nitride film for providing a diffusion barrier for Cu as well as an etch stop for the duel damascene process. Directly above the silicon nitride film is a silicon oxynitride film. The silicon oxynitride film is graded, to form a gradual change in composition of nitrogen and oxygen within the film. Directly above the silicon oxynitride film is silicon oxide. The silicon oxide serves as an insulator for metal lines. Preferably, the film stack of silicon nitride, silicon oxynitride and silicon oxide is all formed in sequence, within the same plasma-processing chamber, by modifying the composition of film-forming gases for forming each film.
    Type: Application
    Filed: March 12, 2001
    Publication date: August 23, 2001
    Inventors: Preston Smith, Chi-hing Choi
  • Patent number: 6255233
    Abstract: A structure to enable damascene copper semiconductor fabrication is disclosed. There is a silicon nitride film for providing a diffusion barrier for Cu as well as an etch stop for the duel damascene process. Directly above the silicon nitride film is a silicon oxynitride film. The silicon oxynitride film is graded, to form a gradual change in composition of nitrogen and oxygen within the film. Directly above the silicon oxynitride film is silicon oxide. The silicon oxide serves as an insulator for metal lines. Preferably, the film stack of silicon nitride, silicon oxynitride and silicon oxide is all formed in sequence, within the same plasma-processing chamber, by modifying the composition of film-forming gases for forming each film.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: July 3, 2001
    Assignee: Intel Corporation
    Inventors: Preston Smith, Chi-hing Choi