Patents by Inventor Chi-hsiang Shen
Chi-hsiang Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12224179Abstract: The current disclosure describes techniques of protecting a metal interconnect structure from being damaged by subsequent chemical mechanical polishing processes used for forming other metal structures over the metal interconnect structure. The metal interconnect structure is receded to form a recess between the metal interconnect structure and the surrounding dielectric layer. A metal cap structure is formed within the recess. An upper portion of the dielectric layer is strained to include a tensile stress which expands the dielectric layer against the metal cap structure to reduce or eliminate a gap in the interface between the metal cap structure and the dielectric layer.Type: GrantFiled: March 15, 2023Date of Patent: February 11, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yi-Sheng Lin, Chi-Jen Liu, Chi-Hsiang Shen, Te-Ming Kung, Chun-Wei Hsu, Chia-Wei Ho, Yang-Chun Cheng, William Weilun Hong, Liang-Guang Chen, Kei-Wei Chen
-
Publication number: 20240420978Abstract: Provided is a chemical-mechanical polishing apparatus, a retaining ring for a chemical-mechanical polishing apparatus, and a chemical-mechanical polishing method. A chemical-mechanical polishing apparatus includes a polishing pad; a polishing head configured to receive a wafer and to hold the wafer against the polishing pad; and a retaining ring configured to engage with the polishing head, wherein the retaining ring is formed with channels configured for flowing a slurry in a flow direction from outside the retaining ring to inside the retaining ring, wherein the channels have a cross-sectional flow area that decreases in the flow direction.Type: ApplicationFiled: June 14, 2023Publication date: December 19, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jeng-Chi LIN, Chi-hsiang SHEN, Te-Chien HOU, Tang-Kuei CHANG, Chi-Jen LIU, Hui-Chi HUANG, Kei-Wei CHEN
-
Publication number: 20240395537Abstract: Provided are a tool and a method for processing a semiconductor wafer. A processing method includes supporting a semiconductor wafer continuously along a periphery of the semiconductor wafer with an electrically grounded conductive member; and spinning the semiconductor wafer, wherein surface charges induced during spinning are dissipated by movement of electrons from the semiconductor wafer to the electrically grounded conductive member at the periphery of the semiconductor wafer.Type: ApplicationFiled: May 26, 2023Publication date: November 28, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chi-hsiang Shen, Jeng-Chi Lin, Te-Chien Hou, Che-Hao Tu, Tang-Kuei Chang, Kei-Wei Chen, Hui-Chi Huang
-
Publication number: 20240383092Abstract: Provided is a polishing tool and a methods for polishing a wafer or manufacturing a semiconductor device. A method for polishing a wafer includes contacting a surface of the wafer to a polishing pad at an interface; rotating the wafer and/or the pad; and delivering a series of selected treatment agents to the interface and removing waste from the interface through channels extending through the pad, while controlling a rate of delivering the selected polishing agents and removing the waste streams through the channels formed in the pad to optimize polishing of the wafer.Type: ApplicationFiled: May 16, 2023Publication date: November 21, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Te-Chien Hou, Chi-hsiang Shen, Chen-Chi Tang, Shich-Chang Suen
-
Publication number: 20240363447Abstract: Embodiments of the present disclosure relate to a CMP tool and methods for planarization a substrate. Particularly, embodiments of the present disclosure relate to an in-situ defect data analyzer to identify CMP induced defects during polishing processing and cleaning processing performed in the CMP tool. In some embodiments, the CMP tool includes an AI (artificial intelligence)-assisted defect database. The defect database may be used to identify and classify CMP related defects, such as scratch, fall-on slurry residuals, during polishing or cleaning process. As a result, defect warning cycle time for a CMP process is improved significantly.Type: ApplicationFiled: April 30, 2023Publication date: October 31, 2024Inventors: Te-Chien HOU, Chen-Chi TANG, Chi-hsiang SHEN, Jeng-Chi LIN, Chen-Hao WU, Shich-Chang SUEN
-
Publication number: 20240359287Abstract: A chemical mechanical polishing device is provided according to some embodiments. The chemical mechanical polishing device comprises a polishing pad. The polishing pad includes a plurality of stacks of first pad fractions and a plurality of stacks of second pad fractions. The first pad fractions and the second pad fractions have different hardness. The stacks of first pad fractions and the stacks of the second pad fractions are arranged with a pattern corresponding to a predetermined feature of a structure to be polished by the chemical mechanical polishing device. The predetermined feature may include a surface profile or a material of the structure to be polished.Type: ApplicationFiled: April 27, 2023Publication date: October 31, 2024Inventors: Te-Chien HOU, Chih Hung CHEN, Chi-hsiang SHEN, Yu-Heng CHENG, Shich-Chang SUEN
-
Publication number: 20240290629Abstract: A method for CMP includes following operations. A first metal layer and a second metal layer are formed in a dielectric structure. The second metal layer is formed over a portion of the first metal layer. A first composition is provided to remove a portion of the first metal layer. A second composition is provided to form a protecting layer over the second metal layer. The protecting layer is removed to expose the second metal layer. A CMP operation is performed to remove a portion of the first metal layer, a portion of the second metal layer and a portion of the dielectric structure.Type: ApplicationFiled: April 29, 2024Publication date: August 29, 2024Inventors: JI CUI, FU-MING HUANG, TING-KUI CHANG, TANG-KUEI CHANG, CHUN-CHIEH LIN, WEI-WEI LIANG, LIANG-GUANG CHEN, KEI-WEI CHEN, HUNG YEN, TING-HSUN CHANG, CHI-HSIANG SHEN, LI-CHIEH WU, CHI-JEN LIU
-
Patent number: 12002684Abstract: A method for CMP includes following operations. A metal stack is received. The metal layer stack includes at least a first metal layer and a second metal layer, and a top surface of the first metal layer and a top surface of the second metal layer are exposed. A protecting layer is formed over the second metal layer. A portion of the first metal layer is etched. The protecting layer protects the second metal layer during the etching of the portion of the first metal layer. A top surface of the etched first metal layer is lower than a top surface of the protecting layer. The protecting layer is removed from the second metal layer.Type: GrantFiled: November 21, 2022Date of Patent: June 4, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Ji Cui, Fu-Ming Huang, Ting-Kui Chang, Tang-Kuei Chang, Chun-Chieh Lin, Wei-Wei Liang, Liang-Guang Chen, Kei-Wei Chen, Hung Yen, Ting-Hsun Chang, Chi-Hsiang Shen, Li-Chieh Wu, Chi-Jen Liu
-
Publication number: 20230364733Abstract: A chemical mechanical planarization apparatus includes a multi-zone platen comprising a plurality of individually controlled concentric toroids. The rotation direction, rotation speed, applied force, relative height, and temperature of each concentric toroid is individually controlled. Concentric polishing pads are affixed to an upper surface of each of the individually controlled concentric toroids. The chemical mechanical planarization apparatus includes a single central slurry source or includes individual slurry sources for each individually controlled concentric toroid.Type: ApplicationFiled: July 26, 2023Publication date: November 16, 2023Inventors: Ting-Hsun Chang, Hung Yen, Chi-Hsiang Shen, Fu-Ming Huang, Chun-Chieh Lin, Tsung Hsien Chang, Ji Cui, Liang-Guang Chen, Chih Hung Chen, Kei-Wei Chen
-
Patent number: 11772228Abstract: A chemical mechanical planarization apparatus includes a multi-zone platen comprising a plurality of individually controlled concentric toroids. The rotation direction, rotation speed, applied force, relative height, and temperature of each concentric toroid is individually controlled. Concentric polishing pads are affixed to an upper surface of each of the individually controlled concentric toroids. The chemical mechanical planarization apparatus includes a single central slurry source or includes individual slurry sources for each individually controlled concentric toroid.Type: GrantFiled: January 17, 2020Date of Patent: October 3, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Ting-Hsun Chang, Hung Yen, Chi-Hsiang Shen, Fu-Ming Huang, Chun-Chieh Lin, Tsung Hsien Chang, Ji Cui, Liang-Guang Chen, Chih Hung Chen, Kei-Wei Chen
-
Publication number: 20230294237Abstract: A chemical mechanical polishing (CMP) system includes a polishing pad configured to polish a substrate. The CMP system further includes a heating system configured to adjust a temperature of the polishing pad. The heating system comprises at least one heating element spaced apart from the polishing pad. The CMP system further includes a sensor configured to measure the temperature of the polishing pad.Type: ApplicationFiled: March 21, 2023Publication date: September 21, 2023Inventors: Yi-Sheng LIN, Chi-Hsiang SHEN, Chi-Jen LIU, Chun-Wei Hsu, Yang-Chun CHENG, Kei-Wei CHEN
-
Publication number: 20230230846Abstract: The current disclosure describes techniques of protecting a metal interconnect structure from being damaged by subsequent chemical mechanical polishing processes used for forming other metal structures over the metal interconnect structure. The metal interconnect structure is receded to form a recess between the metal interconnect structure and the surrounding dielectric layer. A metal cap structure is formed within the recess. An upper portion of the dielectric layer is strained to include a tensile stress which expands the dielectric layer against the metal cap structure to reduce or eliminate a gap in the interface between the metal cap structure and the dielectric layer.Type: ApplicationFiled: March 15, 2023Publication date: July 20, 2023Inventors: Yi-Sheng LIN, Chi-Jen LIU, Chi-Hsiang SHEN, Te-Ming KUNG, Chun-Wei HSU, Chia-Wei HO, Yang-Chun CHENG, William Weilun HONG, Liang-Guang CHEN, Kei-Wei CHEN
-
Patent number: 11658065Abstract: A method for CMP includes following operations. A metal layer is received. A CMP slurry composition is provided in a CMP apparatus. The CMP slurry composition includes at least a first oxidizer and a second oxidizer different from each other. The first oxidizer is oxidized to form a peroxidant by the second oxidizer. A portion of the metal layer is oxidized to form a first metal oxide by the peroxidant. The first metal oxide is re-oxidized to form a second metal oxide by the second oxidizer.Type: GrantFiled: June 15, 2020Date of Patent: May 23, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Ji Cui, Fu-Ming Huang, Ting-Kui Chang, Tang-Kuei Chang, Chun-Chieh Lin, Wei-Wei Liang, Chi-Hsiang Shen, Ting-Hsun Chang, Li-Chieh Wu, Hung Yen, Chi-Jen Liu, Liang-Guang Chen, Kei-Wei Chen
-
Patent number: 11637021Abstract: The current disclosure describes techniques of protecting a metal interconnect structure from being damaged by subsequent chemical mechanical polishing processes used for forming other metal structures over the metal interconnect structure. The metal interconnect structure is receded to form a recess between the metal interconnect structure and the surrounding dielectric layer. A metal cap structure is formed within the recess. An upper portion of the dielectric layer is strained to include a tensile stress which expands the dielectric layer against the metal cap structure to reduce or eliminate a gap in the interface between the metal cap structure and the dielectric layer.Type: GrantFiled: May 18, 2021Date of Patent: April 25, 2023Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yi-Sheng Lin, Chi-Jen Liu, Chi-Hsiang Shen, Te-Ming Kung, Chun-Wei Hsu, Chia-Wei Ho, Yang-Chun Cheng, William Weilun Hong, Liang-Guang Chen, Kei-Wei Chen
-
Patent number: 11633829Abstract: A chemical mechanical polishing (CMP) system includes a polishing pad configured to polish a substrate. The CMP system further includes a heating system configured to adjust a temperature of the polishing pad. The heating system comprises at least one heating element spaced apart from the polishing pad. The CMP system further includes a sensor configured to measure the temperature of the polishing pad.Type: GrantFiled: September 17, 2019Date of Patent: April 25, 2023Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yi-Sheng Lin, Chi-Hsiang Shen, Chi-Jen Liu, Chun-Wei Hsu, Yang-Chun Cheng, Kei-Wei Chen
-
Publication number: 20230082084Abstract: A method for CMP includes following operations. A metal stack is received. The metal layer stack includes at least a first metal layer and a second metal layer, and a top surface of the first metal layer and a top surface of the second metal layer are exposed. A protecting layer is formed over the second metal layer. A portion of the first metal layer is etched. The protecting layer protects the second metal layer during the etching of the portion of the first metal layer. A top surface of the etched first metal layer is lower than a top surface of the protecting layer. The protecting layer is removed from the second metal layer.Type: ApplicationFiled: November 21, 2022Publication date: March 16, 2023Inventors: JI CUI, FU-MING HUANG, TING-KUI CHANG, TANG-KUEI CHANG, CHUN-CHIEH LIN, WEI-WEI LIANG, LIANG-GUANG CHEN, KEI-WEI CHEN, HUNG YEN, TING-HSUN CHANG, CHI-HSIANG SHEN, LI-CHIEH WU, CHI-JEN LIU
-
Publication number: 20220384245Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.Type: ApplicationFiled: August 5, 2022Publication date: December 1, 2022Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
-
Patent number: 11508585Abstract: A method for CMP includes following operations. A dielectric structure is received. The dielectric structure includes a metal layer stack formed therein. The metal layer stack includes at least a first metal layer and a second metal layer, and the first metal layer and the second metal layer are exposed through a surface of the dielectric structure. A first composition is provided to remove a portion of the first metal layer from the surface of the dielectric structure. A second composition is provided to form a protecting layer over the second metal layer. The protecting layer is removed from the second metal layer. A CMP operation is performed to remove a portion of the second metal layer. In some embodiments, the protecting layer protects the second metal layer during the removal of the portion of the first metal layer.Type: GrantFiled: June 15, 2020Date of Patent: November 22, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Ji Cui, Fu-Ming Huang, Ting-Kui Chang, Tang-Kuei Chang, Chun-Chieh Lin, Wei-Wei Liang, Liang-Guang Chen, Kei-Wei Chen, Hung Yen, Ting-Hsun Chang, Chi-Hsiang Shen, Li-Chieh Wu, Chi-Jen Liu
-
Patent number: 11482450Abstract: Methods of forming a slurry and methods of performing a chemical mechanical polishing (CMP) process utilized in manufacturing semiconductor devices, as described herein, may be performed on semiconductor devices including integrated contact structures with ruthenium (Ru) plug contacts down to a semiconductor substrate. The slurry may be formed by mixing a first abrasive, a second abrasive, and a reactant with a solvent. The first abrasive may include a first particulate including titanium dioxide (TiO2) particles and the second abrasive may include a second particulate that is different from the first particulate. The slurry may be used in a CMP process for removing ruthenium (Ru) materials and dielectric materials from a surface of a workpiece resulting in better WiD loading and planarization of the surface for a flat profile.Type: GrantFiled: February 26, 2021Date of Patent: October 25, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chia Hsuan Lee, Chun-Wei Hsu, Chia-Wei Ho, Chi-Hsiang Shen, Li-Chieh Wu, Jian-Ci Lin, Chi-Jen Liu, Yi-Sheng Lin, Yang-Chun Cheng, Liang-Guang Chen, Kuo-Hsiu Wei, Kei-Wei Chen
-
Publication number: 20210391186Abstract: A method for CMP includes following operations. A dielectric structure is received. The dielectric structure includes a metal layer stack formed therein. The metal layer stack includes at least a first metal layer and a second metal layer, and the first metal layer and the second metal layer are exposed through a surface of the dielectric structure. A first composition is provided to remove a portion of the first metal layer from the surface of the dielectric structure. A second composition is provided to form a protecting layer over the second metal layer. The protecting layer is removed from the second metal layer. A CMP operation is performed to remove a portion of the second metal layer. In some embodiments, the protecting layer protects the second metal layer during the removal of the portion of the first metal layer.Type: ApplicationFiled: June 15, 2020Publication date: December 16, 2021Inventors: Ji Cui, Fu-Ming Huang, Ting-Kui Chang, Tang-Kuei Chang, Chun-Chieh Lin, Wei-Wei Liang, Liang-Guang Chen, Kei-Wei Chen, Hung Yen, Ting-Hsun Chang, Chi-Hsiang Shen, Li-Chieh Wu, Chi-Jen Liu