Patents by Inventor Chi-Hsiao Chen

Chi-Hsiao Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955541
    Abstract: A semiconductor device includes a substrate, a buffer layer disposed on the substrate, a channel layer disposed on the buffer layer, a barrier layer disposed on the buffer layer, and a passivation layer disposed on the barrier layer. The semiconductor device further includes a device isolation region that extends through the passivation layer, the barrier layer, and at least a portion of the channel layer, and encloses a first device region of the semiconductor device. A damage concentration of the device isolation region varies along a depth direction, and is highest near a junction between the barrier layer and the channel layer.
    Type: Grant
    Filed: May 31, 2021
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chi-Hsiao Chen, Kai-Lin Lee
  • Publication number: 20240071535
    Abstract: Provided is an anti-fuse memory including a anti-fuse memory cell including an isolation structure, a select gate, first and second gate insulating layers, an anti-fuse gate, and first, second and third doped regions. The isolation structure is disposed in a substrate. The select gate is disposed on the substrate. The first gate insulating layer is disposed between the select gate and the substrate. The anti-fuse gate is disposed on the substrate and partially overlapped with the isolation structure. The second gate insulating layer is disposed between the anti-fuse gate and the substrate. The first doped region and the second doped region are disposed in the substrate at opposite sides of the select gate, respectively, wherein the first doped region is located between the select gate and the anti-fuse gate. The third doped region is disposed in the substrate and located between the first doped region and the isolation structure.
    Type: Application
    Filed: October 16, 2022
    Publication date: February 29, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Chung-Hao Chen, Chi-Hsiu Hsu, Chi-Fa Lien, Ying-Ting Lin, Cheng-Hsiao Lai, Ya-Nan Mou
  • Publication number: 20230361206
    Abstract: A high electron mobility transistor includes a substrate. A channel layer is disposed on the substrate. An active layer is disposed on the channel layer. The active layer includes a P-type aluminum gallium nitride layer. A P-type gallium nitride gate is disposed on the active layer. A source electrode and a drain electrode are disposed on the active layer.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chi-Hsiao Chen, Kai-Lin Lee, Wei-Jen Chen
  • Publication number: 20230326980
    Abstract: A high electron mobility transistor (HEMT) device including the following components is provided. A gate electrode is located on a barrier layer. A source electrode is located on the first side of the gate electrode. A drain electrode is located on the second side of the gate. A source field plate is connected to the source electrode. The source field plate includes first, second, and third field plate portions. The first field plate portion is connected to the source electrode and is located on the first side of the gate electrode. The second field plate portion is located on the second side of the gate electrode. The third field plate portion is connected to the end of the first field plate portion and the end of the second field plate portion. The source field plate has a first opening located directly above the gate electrode.
    Type: Application
    Filed: May 5, 2022
    Publication date: October 12, 2023
    Applicant: United Microelectronics Corp.
    Inventors: Chi-Hsiao Chen, Tzyy-Ming Cheng, Wei Jen Chen, Kai Lin Lee
  • Publication number: 20220359740
    Abstract: A high electron mobility transistor includes a substrate. A channel layer is disposed on the substrate. An active layer is disposed on the channel layer. The active layer includes a P-type aluminum gallium nitride layer. A P-type gallium nitride gate is disposed on the active layer. A source electrode and a drain electrode are disposed on the active layer.
    Type: Application
    Filed: May 31, 2021
    Publication date: November 10, 2022
    Inventors: Chi-Hsiao Chen, Kai-Lin Lee, Wei-Jen Chen
  • Publication number: 20220336650
    Abstract: A semiconductor device includes a substrate, a buffer layer disposed on the substrate, a channel layer disposed on the buffer layer, a barrier layer disposed on the buffer layer, and a passivation layer disposed on the barrier layer. The semiconductor device further includes a device isolation region that extends through the passivation layer, the barrier layer, and at least a portion of the channel layer, and encloses a first device region of the semiconductor device. A damage concentration of the device isolation region varies along a depth direction, and is highest near a junction between the barrier layer and the channel layer.
    Type: Application
    Filed: May 31, 2021
    Publication date: October 20, 2022
    Inventors: Chi-Hsiao Chen, Kai-Lin Lee
  • Patent number: 10629734
    Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: April 21, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
  • Publication number: 20190172949
    Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.
    Type: Application
    Filed: January 18, 2019
    Publication date: June 6, 2019
    Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
  • Patent number: 10229995
    Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: March 12, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
  • Publication number: 20190027602
    Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.
    Type: Application
    Filed: August 4, 2017
    Publication date: January 24, 2019
    Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
  • Publication number: 20180358453
    Abstract: The present invention provides a method of making a tunneling effect transistor (TFET), the method includes: a substrate is provided, having a fin structure disposed thereon, the fin structure includes a first conductive type, a dielectric layer is then formed on the substrate and on the fin structure, a gate trench is formed in the dielectric layer, and a first work function metal layer is formed in the gate trench, the first work function metal layer defines at least a left portion, a right portion and a central portion, an etching process is performed to remove the central portion of the first work function metal layer, and to form a recess between the left portion and the right portion of the first work function metal layer, afterwards, a second work function metal layer is formed and filled in the recess.
    Type: Application
    Filed: July 6, 2017
    Publication date: December 13, 2018
    Inventors: Hung-Wen Huang, Kai-Lin Lee, Ren-Yu He, Chi-Hsiao Chen, Ting-Hsuan Kang, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh