Patents by Inventor Chi-hsin Chang

Chi-hsin Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240355936
    Abstract: Provided are a semiconductor device and a manufacturing method thereof. The semiconductor device includes a substrate having a first memory region. The first memory region includes a first dielectric layer, a first floating gate, a first inter-gate dielectric layer, a control gate and a first contact. The first dielectric layer is disposed on the substrate. The first floating gate is disposed on the first dielectric layer. The first inter-gate dielectric layer is disposed on the first floating layer. The control gate is disposed on the first inter-gate dielectric layer. The first contact penetrates through the first control gate and the first inter-gate dielectric layer and is landed on the first floating gate.
    Type: Application
    Filed: June 1, 2023
    Publication date: October 24, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Boon Keat Toh, Chih-Hsin Chang, Szu Han Wu, Chi Ren
  • Patent number: 12044351
    Abstract: A rotary device with automatic reset function for precise stopping and holding of a viewable rotating element without free play or slop remaining includes a conversion assembly, and a power assembly with output element and sensing assembly. The conversion assembly comprises a light-shielding structure with the light-shielding structure on the extension part. The power assembly with output element can drive the extension part to rotate synchronously with the light-shielding structure. The detachable sensing assembly overlaps the rotation path of the light-shielding structure, and the conversion assembly rotates at different angles so that the light-shielding structure and the sensing assembly will match at certain angles, so as to trigger a sensing signal and call up the output element. A display screen includes the rotary device with automatic reset function and a display assembly.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: July 23, 2024
    Assignees: Futaijing Precision Electronics (Yantai) Co., Ltd., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Sheng Chang, Chi-Cheng Wen, Chih-Cheng Lee, Wen-Bin Huang, Tsung-Hsin Wu, Yu-Chih Cheng, Hsiu-Fu Li
  • Patent number: 12040416
    Abstract: An optical component packaging structure is provided. The optical component packaging structure includes a substrate, a far-infrared sensor chip, a metal covering cap and a light filter. The far-infrared sensor chip is disposed on the substrate and electrically connected to the substrate. The metal covering cap is disposed on the substrate and accommodating the far-infrared sensor chip. The metal covering cap has an opening exposing the far-infrared sensor chip. The light filter is disposed out of the opening and on the inner surface for covering the opening to filter the far-infrared light passing through. The far-infrared sensor chip is surrounded by the metal covering cap, the substrate and the light filter, and the metal covering cap is directly connected with the substrate.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: July 16, 2024
    Assignee: PIXART IMAGING INC.
    Inventors: Yi-Chang Chang, Yen-Hsin Chen, Chi-Chih Shen
  • Publication number: 20240113188
    Abstract: An integrated circuit (IC) structure includes a semiconductor substrate, a first gate line, a second gate line, and a first auxiliary gate portion. The semiconductor substrate comprises a semiconductor fin. The semiconductor fin extends substantially along a first direction. The first gate line and the second gate line extend substantially along a second direction different form the first direction from a top view. The first auxiliary gate portion connects the first gate line to the second gate line from the top view.
    Type: Application
    Filed: March 27, 2023
    Publication date: April 4, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Li CHIU, Yi-Juei LEE, Yu-Jie YE, Chi-Hsin CHANG, Chun-Jun LIN
  • Patent number: 11749679
    Abstract: An IC fabrication method includes forming a first fin on a semiconductor substrate, forming an isolation dielectric material over the first fin, and planarizing the isolation dielectric material. A top surface of the first fin is covered by the isolation dielectric material after planarizing the isolation dielectric material. The method further includes etching back the isolation dielectric material until the first fin protrudes from the isolation dielectric material.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: September 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Juei Lee, Chia-Ming Liang, Chi-Hsin Chang, Jin-Aun Ng, Yi-Shien Mor, Huai-Hsien Chiu
  • Publication number: 20210335785
    Abstract: An IC fabrication method includes forming a first fin on a semiconductor substrate, forming an isolation dielectric material over the first fin, and planarizing the isolation dielectric material. A top surface of the first fin is covered by the isolation dielectric material after planarizing the isolation dielectric material. The method further includes etching back the isolation dielectric material until the first fin protrudes from the isolation dielectric material.
    Type: Application
    Filed: July 2, 2021
    Publication date: October 28, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Juei LEE, Chia-Ming LIANG, Chi-Hsin CHANG, Jin-Aun NG, Yi-Shien MOR, Huai-Hsien CHIU
  • Patent number: 11075199
    Abstract: A method includes forming a first fin on a semiconductor substrate, forming an isolation dielectric material over the first fin, and planarizing the isolation dielectric material. A top surface of the first fin is covered by the isolation dielectric material after planarizing the isolation dielectric material. The method further includes etching back the isolation dielectric material until the first fin protrudes from the isolation dielectric material.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: July 27, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Juei Lee, Chia-Ming Liang, Chi-Hsin Chang, Jin-Aun Ng, Yi-Shien Mor, Huai-Hsien Chiu
  • Patent number: 11004747
    Abstract: Integrated circuit devices having optimized fin critical dimension loading are disclosed herein. An exemplary integrated circuit device includes a core region that includes a first multi-fin structure and an input/output region that includes a second multi-fin structure. The first multi-fin structure has a first width and the second multi-fin structure has a second width. The first width is greater than the second width. In some implementations, the first multi-fin structure has a first fin spacing and the second multi-fin structure has a second fin spacing. The first fin spacing is less than the second fin spacing. In some implementations, a first adjacent fin pitch of the first multi-fin structure is greater than or equal to three times a minimum fin pitch and a second adjacent fin pitch of the second multi-fin structure is less than or equal to two times the minimum fin pitch.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: May 11, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia Ming Liang, Yi-Shien Mor, Huai-Hsien Chiu, Chi-Hsin Chang, Jin-Aun Ng, Yi-Juei Lee
  • Publication number: 20200273754
    Abstract: Integrated circuit devices having optimized fin critical dimension loading are disclosed herein. An exemplary integrated circuit device includes a core region that includes a first multi-fin structure and an input/output region that includes a second multi-fin structure. The first multi-fin structure has a first width and the second multi-fin structure has a second width. The first width is greater than the second width. In some implementations, the first multi-fin structure has a first fin spacing and the second multi-fin structure has a second fin spacing. The first fin spacing is less than the second fin spacing. In some implementations, a first adjacent fin pitch of the first multi-fin structure is greater than or equal to three times a minimum fin pitch and a second adjacent fin pitch of the second multi-fin structure is less than or equal to two times the minimum fin pitch.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 27, 2020
    Inventors: Chia Ming Liang, Yi-Shien Mor, Huai-Hsien Chiu, Chi-Hsin Chang, Jin-Aun Ng, Yi-Juei Lee
  • Patent number: 10692769
    Abstract: Integrated circuit devices having optimized fin critical dimension loading are disclosed herein. An exemplary integrated circuit device includes a core region that includes a first multi-fin structure and an input/output region that includes a second multi-fin structure. The first multi-fin structure has a first width and the second multi-fin structure has a second width. The first width is greater than the second width. In some implementations, the first multi-fin structure has a first fin spacing and the second multi-fin structure has a second fin spacing. The first fin spacing is less than the second fin spacing. In some implementations, a first adjacent fin pitch of the first multi-fin structure is greater than or equal to three times a minimum fin pitch and a second adjacent fin pitch of the second multi-fin structure is less than or equal to two times the minimum fin pitch.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: June 23, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Chia Ming Liang, Yi-Shien Mor, Huai-Hsien Chiu, Chi-Hsin Chang, Jin-Aun Ng, Yi-Juei Lee
  • Patent number: 10651090
    Abstract: Integrated circuit devices having optimized fin critical dimension loading are disclosed herein. An exemplary integrated circuit device includes a core region that includes a first multi-fin structure and an input/output region that includes a second multi-fin structure. The first multi-fin structure has a first width and the second multi-fin structure has a second width. The first width is greater than the second width. In some implementations, the first multi-fin structure has a first fin spacing and the second multi-fin structure has a second fin spacing. The first fin spacing is less than the second fin spacing. In some implementations, a first adjacent fin pitch of the first multi-fin structure is greater than or equal to three times a minimum fin pitch and a second adjacent fin pitch of the second multi-fin structure is less than or equal to two times the minimum fin pitch.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: May 12, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Chia Ming Liang, Yi-Shien Mor, Huai-Hsien Chiu, Chi-Hsin Chang, Jin-Aun Ng, Yi-Juei Lee
  • Publication number: 20190189614
    Abstract: A method includes forming a first fin on a semiconductor substrate, forming an isolation dielectric material over the first fin, and planarizing the isolation dielectric material. A top surface of the first fin is covered by the isolation dielectric material after planarizing the isolation dielectric material. The method further includes etching back the isolation dielectric material until the first fin protrudes from the isolation dielectric material.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 20, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Juei LEE, Chia-Ming LIANG, Chi-Hsin CHANG, Jin-Aun NG, Yi-Shien MOR, Huai-Hsien CHIU
  • Publication number: 20190067112
    Abstract: Integrated circuit devices having optimized fin critical dimension loading are disclosed herein. An exemplary integrated circuit device includes a core region that includes a first multi-fin structure and an input/output region that includes a second multi-fin structure. The first multi-fin structure has a first width and the second multi-fin structure has a second width. The first width is greater than the second width. In some implementations, the first multi-fin structure has a first fin spacing and the second multi-fin structure has a second fin spacing. The first fin spacing is less than the second fin spacing. In some implementations, a first adjacent fin pitch of the first multi-fin structure is greater than or equal to three times a minimum fin pitch and a second adjacent fin pitch of the second multi-fin structure is less than or equal to two times the minimum fin pitch.
    Type: Application
    Filed: October 31, 2017
    Publication date: February 28, 2019
    Inventors: Chia Ming Liang, Yi-Shien Mor, Huai-Hsien Chiu, Chi-Hsin Chang, Jin-Aun Ng, Yi-Juei Lee
  • Patent number: 10204905
    Abstract: A semiconductor structure includes a substrate, a first gate structure, and a second gate structure. The substrate has a plurality of first fins and a plurality of second fins, wherein a first pitch between two adjacent first fins is greater than a second pitch between two adjacent second fins. The first gate structure crosses over the first fins. The second gate structure crosses over the second fins, wherein the second gate structure includes an upper portion having two first sidewalls substantially parallel to each other and a lower portion tapers toward the substrate.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: February 12, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Juei Lee, Chia-Ming Liang, Chi-Hsin Chang, Jin-Aun Ng, Yi-Shien Mor, Huai-Hsien Chiu
  • Publication number: 20180308842
    Abstract: A semiconductor structure includes a substrate, a first gate structure, and a second gate structure. The substrate has a plurality of first fins and a plurality of second fins, wherein a first pitch between two adjacent first fins is greater than a second pitch between two adjacent second fins. The first gate structure crosses over the first fins. The second gate structure crosses over the second fins, wherein the second gate structure includes an upper portion having two first sidewalls substantially parallel to each other and a lower portion tapers toward the substrate.
    Type: Application
    Filed: June 23, 2017
    Publication date: October 25, 2018
    Inventors: Yi-Juei LEE, Chia-Ming LIANG, Chi-Hsin CHANG, Jin-Aun NG, Yi-Shien MOR, Huai-Hsien CHIU
  • Patent number: 8854897
    Abstract: A static random access memory apparatus and a bit-line voltage controller includes a controller, a pull-up circuit, a pull-down circuit and a voltage keeping circuit. The controller receives a bank selecting signal and a clock signal, and decides a pull-up time period, a pull-down time period and a voltage keeping time period according to the bank selecting signal and the clock signal. The pull-up circuit pulls up a bit-line power according to a first reference voltage within the pull-up time period. The pull-down circuit pulls down the bit-line power according to a second reference voltage within the pull-down time period. The voltage keeping circuit keeps the bit-line power to equal to an output voltage during the voltage keeping time period. The voltage keeping time period is after the pull-up time period and the pull-down time period.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: October 7, 2014
    Assignees: Faraday Technology Corp., National Chiao Tung University
    Inventors: Ching-Te Chuang, Nan-Chun Lien, Wei-Nan Liao, Chi-Hsin Chang, Hao-I Yang, Wei Hwang, Ming-Hsien Tu
  • Publication number: 20140009999
    Abstract: A static random access memory apparatus and a bit-line voltage controller thereof are disclosed. The bit-line voltage controller includes a controller, a pull-up circuit, a pull-down circuit and a voltage keeping circuit. The controller receives a bank selecting signal and a clock signal, and decides a pull-up time period, a pull-down time period and a voltage keeping time period according to the bank selecting signal and the clock signal. The pull-up circuit pulls up a bit-line power according to a first reference voltage within the pull-up time period. The pull-down circuit pulls down the bit-line power according to a second reference voltage within the pull-down time period. The voltage keeping circuit keeps the bit-line power to equal to an output voltage during the voltage keeping time period. The voltage keeping time period is after the pull-up time period and the pull-down time period.
    Type: Application
    Filed: November 1, 2012
    Publication date: January 9, 2014
    Inventors: Ching-Te Chuang, Nan-Chun Lien, Wei-Nan Liao, Chi-Hsin Chang, Hao-I Yang, Wei Hwang, Ming-Hsien Tu
  • Patent number: 8450161
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 28, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hao Chen, Hao-Ming Lien, Ssu-Yu Li, Jun-Lin Yeh, Kang-Cheng Lin, Kuo-Tai Huang, Chii-Horng Li, Chien-Liang Chen, Chung-Hau Fei, Wen-Chih Yang, Jin-Aun Ng, Chi Hsin Chang, Chun Ming Lin, Harry Chuang
  • Publication number: 20120225529
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
    Type: Application
    Filed: May 7, 2012
    Publication date: September 6, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chieh-Hao Chen, Hao-Ming Lien, Ssu-Yu Li, Jun-Lin Yeh, Kang-Cheng Lin, Kuo-Tai Huang, Chii-Horng Li, Chien-Liang Chen, Chung-Hau Fei, Wen-Chih Yang, Jin-Aun Ng, Chi Hsin Chang, Chun Ming Lin, Harry Chuang
  • Patent number: 8193586
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: June 5, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hao Chen, Hao-Ming Lien, Ssu-Yi Li, Jun-Lin Yeh, Kang-Cheng Lin, Kuo-Tai Huang, Chii-Horng Li, Chien-Hau Fei, Wen-Chih Yang, Jin-Aun Ng, Chi Hsin Chang, Chun Ming Lin, Harry Chuang, Chien-Liang Chen