Patents by Inventor Chi-King Pu

Chi-King Pu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6979868
    Abstract: The present invention provides a method for reducing-plasma damage to a gate oxide of a metal-oxide semiconductor (MOS) transistor positioned on a substrate of a MOS semiconductor wafer. The method begins with the formation of a dielectric layer covering the MOS transistor on the substrate. An etching process is then performed to form a first contact hole through the dielectric layer to a gate on the surface of the MOS transistor, as well as to form a second contact hole through the dielectric layer to an n-well in the substrate. A bypass circuit, positioned on the dielectric layer and the first and second contact holes, and a fusion area are then formed. The fusion area, electrically connecting with the bypass circuit, also electrically connects with the MOS transistor and the n-well thereafter. Ions produced during the process are thus transferred to the n-well via the conductive wire so as to reduce plasma damage to the gate oxide.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: December 27, 2005
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Fan Chen, Chi-King Pu, Shou-Kong Fan
  • Patent number: 6537883
    Abstract: The present invention provides a method for reducing plasma damage to a gate oxide of a metal-oxide semiconductor (MOS) transistor positioned on a substrate of a MOS semiconductor wafer. The method begins with the formation of a dielectric layer covering the MOS transistor on the substrate. An etching process is then performed to form a first contact hole through the dielectric layer to a gate on the surface of the MOS transistor, as well as to form a second contact hole through the dielectric layer to an n-well in the substrate. A bypass circuit, positioned on the dielectric layer and the first and second contact holes, and a fusion area are then formed. The fusion area, electrically connecting with the bypass circuit, also electrically connects with the MOS transistor and the n-well thereafter. Ions produced during the process are thus transferred to the n-well via the conductive wire so as to reduce plasma damage to the gate oxide.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: March 25, 2003
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Fan Chen, Chi-King Pu, Shou-Kong Fan
  • Publication number: 20020155674
    Abstract: A tetra-ethyl-ortho-silicate (TEOS) layer is first deposited on the surface of a MOS transistor followed by the deposition of a borophosposilicate glass (BPSG) layer atop the TEOS layer. Thereafter, an ion implantation process of BF2+ is performed to alter the dopant concentration in the gate conduction layer of the PMOS transistor. Both the TEOS layer and the BPSG layer suppress both free fluorine and boron ions from entering the gate during the ion implantation process of BF2+ to prevent boron penetration of the MOS transistor and stabilize the threshold voltage of the MOS transistor.
    Type: Application
    Filed: April 18, 2001
    Publication date: October 24, 2002
    Inventors: Chi-King Pu, Yi-Fan Chen
  • Publication number: 20020155680
    Abstract: The present invention provides a method for reducing plasma damage to a gate oxide of a metal-oxide semiconductor (MOS) transistor positioned on a substrate of a MOS semiconductor wafer. The method begins with the formation of a dielectric layer covering the MOS transistor on the substrate. An etching process is then performed to form a first contact hole through the dielectric layer to a gate on the surface of the MOS transistor, as well as to form a second contact hole through the dielectric layer to an n-well in the substrate. A bypass circuit, positioned on the dielectric layer and the first and second contact holes, and a fusion area are then formed. The fusion area, electrically connecting with the bypass circuit, also electrically connects with the MOS transistor and the n-well thereafter. Ions produced during the process are thus transferred to the n-well via the conductive wire so as to reduce plasma damage to the gate oxide.
    Type: Application
    Filed: April 17, 2002
    Publication date: October 24, 2002
    Inventors: Yi-Fan Chen, Chi-King Pu, Shou-Kong Fan
  • Publication number: 20020153593
    Abstract: The present invention provides a method for reducing plasma damage to a gate oxide of a metal-oxide semiconductor (MOS) transistor positioned on a substrate of a MOS semiconductor wafer. The method begins with the formation of a dielectric layer covering the MOS transistor on the substrate. An etching process is then performed to form a first contact hole through the dielectric layer to a gate on the surface of the MOS transistor, as well as to form a second contact hole through the dielectric layer to an n-well in the substrate. A bypass circuit, positioned on the dielectric layer and the first and second contact holes, and a fusion area are then formed. The fusion area, electrically connecting with the bypass circuit, also electrically connects with the MOS transistor and the n-well thereafter. Ions produced during the process are thus transferred to the n-well via the conductive wire so as to reduce plasma damage to the gate oxide.
    Type: Application
    Filed: April 18, 2001
    Publication date: October 24, 2002
    Inventors: Yi-Fan Chen, Chi-King Pu, Shou-Kong Fan