Patents by Inventor Chi On Chui

Chi On Chui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240250153
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a gate electrode disposed over a semiconductor substrate and a gate cut-fill structure disposed in the gate electrode to separate the gate electrode into two portions. The gate cut-fill structure includes a first liner, a second liner disposed on the first liner, and a dielectric material disposed on the second liner. The dielectric material has a ā€œVā€ shaped cross-section.
    Type: Application
    Filed: January 20, 2023
    Publication date: July 25, 2024
    Inventors: Kun-Yi LIN, Tai-Jung KUO, Yunn-Shiuan LIU, Zhen-Cheng WU, Chi On CHUI
  • Publication number: 20240249938
    Abstract: A method includes removing a first dummy gate structure to form a recess around a first nanostructure and a second nanostructure; depositing a sacrificial layer in the recess with a flowable chemical vapor deposition (CVD); and patterning the sacrificial layer to leave a portion of the sacrificial layer between the first nanostructure and the second nanostructure. The method further include depositing a first work function metal in first recess; removing the first work function metal and the portion of the sacrificial layer from the recess; depositing a second work function metal in the recess, wherein the second work function metal is of an opposite type than the first work function metal; and depositing a fill metal over the second work function metal in the recess.
    Type: Application
    Filed: March 8, 2024
    Publication date: July 25, 2024
    Inventors: Hsin-Yi Lee, Jia-Ming Lin, Kun-Yu Lee, Chi On Chui
  • Patent number: 12046519
    Abstract: A method includes depositing a first conductive layer over a gate dielectric layer; depositing a first work function tuning layer over the first conductive layer; selectively removing the first work function tuning layer from over a first region of the first conductive layer; doping the first work function tuning layer with a dopant; and after doping the first work function tuning layer performing a first treatment process to etch the first region of the first conductive layer and a second region of the first work function tuning layer. The first treatment process etches the first conductive layer at a greater rate than the first work function tuning layer.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: July 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Patent number: 12046660
    Abstract: A method includes forming a protruding structure, and forming a non-conformal film on the protruding structure using an Atomic Layer Deposition (ALD) process. The non-conformal film includes a top portion directly over the protruding structure, and a sidewall portion on a sidewall of the protruding structure. The top portion has a first thickness, and the sidewall portion has a second thickness smaller than the first thickness.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: July 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Ho Lin, Cheng-I Lin, Chun-Heng Chen, Chi On Chui
  • Patent number: 12040387
    Abstract: Circuit devices and methods of forming the same are provided. In one embodiment, a method includes receiving a workpiece that includes a substrate and a fin extending from the substrate, forming a first ferroelectric layer on the fin, forming a dummy gate structure over a channel region of the fin, forming a gate spacer over sidewalls of the dummy gate structure, forming an inter-level dielectric layer over the workpiece, removing the dummy gate structure to expose the first ferroelectric layer over the channel region of the fin, and forming a gate electrode over the exposed first ferroelectric layer over the channel region of the fin.
    Type: Grant
    Filed: July 25, 2023
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bo-Feng Young, Chih-Yu Chang, Sai-Hooi Yeong, Chi On Chui, Chih-Hao Wang
  • Patent number: 12041786
    Abstract: A semiconductor device includes a substrate, a fin protruding over the substrate, a gate structure over the fin, a bottom electrode over and electrically coupled to the gate structure, a ferroelectric layer around the bottom electrode, and a top electrode around the ferroelectric layer.
    Type: Grant
    Filed: September 20, 2022
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Han-Jong Chia, Chi On Chui
  • Patent number: 12040365
    Abstract: Dipole engineering techniques are disclosed that incorporate dipole dopant and/or nitrogen into gate dielectrics (e.g., high-k dielectric layers thereof) to realize multi-threshold voltage transistor tuning of transistors. The dipole engineering techniques include (1) forming a dipole dopant source layer over gate dielectrics of some transistors, but not other transistors, (2) forming a mask over gate dielectrics of some transistors, but not other transistors, (3) performing a nitrogen-containing thermal drive-in process, and (4) removing the dipole dopant source layer and the mask after the nitrogen-containing thermal drive-in process. The nitrogen-containing thermal drive-in process diffuses nitrogen and dipole dopant (n-dipole dopant and/or p-dipole dopant) into unmasked gate dielectrics having the dipole dopant source layer formed thereon, nitrogen into unmasked gate dielectrics, and dipole dopant into masked gate dielectrics having the dipole dopant source layer formed thereon.
    Type: Grant
    Filed: December 21, 2023
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pei Ying Lai, Cheng-Chieh Lin, Hsueh-Ju Chen, Tsung-Da Lin, Cheng-Hao Hou, Chi On Chui
  • Publication number: 20240234534
    Abstract: Semiconductor devices, FinFET devices and methods of forming the same are disclosed. One of the semiconductor devices includes a substrate and a gate strip disposed over the substrate. The gate strip includes a high-k layer disposed over the substrate, an N-type work function metal layer disposed over the high-k layer, and a barrier layer disposed over the N-type work function metal layer. The barrier layer includes at least one first film containing TiAlN, TaAlN or AlN.
    Type: Application
    Filed: March 7, 2024
    Publication date: July 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi-On Chui
  • Patent number: 12034058
    Abstract: The present disclosure describes a device that is protected from the effects of an oxide on the metal gate layers of ferroelectric field effect transistors. In some embodiments, the device includes a substrate with fins thereon; an interfacial layer on the fins; a crystallized ferroelectric layer on the interfacial layer; and a metal gate layer on the ferroelectric layer.
    Type: Grant
    Filed: April 3, 2023
    Date of Patent: July 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ming Lin, Sai-Hooi Yeong, Ziwei Fang, Chi On Chui, Huang-Lin Chao
  • Patent number: 12033853
    Abstract: A method for forming a crystalline high-k dielectric layer and controlling the crystalline phase and orientation of the crystal growth of the high-k dielectric layer during an anneal process. The crystalline phase and orientation of the crystal growth of the dielectric layer may be controlled using seeding sections of the dielectric layer serving as nucleation sites and using a capping layer mask during the anneal process. The location of the nucleation sites and the arrangement of the capping layer allow the orientation and phase of the crystal growth of the dielectric layer to be controlled during the anneal process. Based on the dopants and the process controls used the phase can be modified to increase the permittivity and/or the ferroelectric property of the dielectric layer.
    Type: Grant
    Filed: August 9, 2023
    Date of Patent: July 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Yen Peng, Te-Yang Lai, Sai-Hooi Yeong, Chi On Chui
  • Patent number: 12027423
    Abstract: A method includes forming a semiconductor fin protruding higher than top surfaces of isolation regions. The isolation regions extend into a semiconductor substrate. A portion of the semiconductor fin is etched to form a trench, which extends lower than bottom surfaces of the isolation regions, and extends into the semiconductor substrate. The method further includes filling the trench with a first dielectric material to form a first fin isolation region, recessing the first fin isolation region to form a first recess, and filling the first recess with a second dielectric material. The first dielectric material and the second dielectric material in combination form a second fin isolation region.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: July 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Ting Ko, Tai-Chun Huang, Jr-Hung Li, Tze-Liang Lee, Chi On Chui
  • Publication number: 20240213347
    Abstract: A semiconductor device includes a fin protruding above a substrate; source/drain regions over the fin; nanosheets between the source/drain regions; and a gate structure over the fin and between the source/drain regions. The gate structure includes: a gate dielectric material around each of the nanosheets; a first liner material around the gate dielectric material; a work function material around the first liner material; a second liner material around the work function material; and a gate electrode material around at least portions of the second liner material.
    Type: Application
    Filed: March 7, 2024
    Publication date: June 27, 2024
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 12020941
    Abstract: A method includes forming an oxide layer on a semiconductor region, and depositing a first high-k dielectric layer over the oxide layer. The first high-k dielectric layer is formed of a first high-k dielectric material. The method further includes depositing a second high-k dielectric layer over the first high-k dielectric layer, wherein the second high-k dielectric layer is formed of a second high-k dielectric material different from the first high-k dielectric material, depositing a dipole film over and contacting a layer selected from the first high-k dielectric layer and the second high-k dielectric layer, performing an annealing process to drive-in a dipole dopant in the dipole film into the layer, removing the dipole film, and forming a gate electrode over the second high-k dielectric layer.
    Type: Grant
    Filed: July 21, 2023
    Date of Patent: June 25, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Te-Yang Lai, Chun-Yen Peng, Sai-Hooi Yeong, Chi On Chui
  • Patent number: 12020991
    Abstract: A method includes depositing a first high-k dielectric layer over a first semiconductor region, performing a first annealing process on the first high-k dielectric layer, depositing a second high-k dielectric layer over the first high-k dielectric layer; and performing a second annealing process on the first high-k dielectric layer and the second high-k dielectric layer.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: June 25, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Hao Hou, Che-Hao Chang, Da-Yuan Lee, Chi On Chui
  • Patent number: 12021116
    Abstract: A semiconductor device includes nanosheets between the source/drain regions, and a gate structure over the substrate and between the source/drain regions, the gate structure including a gate dielectric material around each of the nanosheets, a work function material around the gate dielectric material, a first capping material around the work function material, a second capping material around the first capping material, wherein the second capping material is thicker at a first location between the nanosheets than at a second location along a sidewall of the nanosheets, and a gate fill material over the second capping material.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: June 25, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Patent number: 12022660
    Abstract: Semiconductor devices and methods of manufacture are provided wherein a ferroelectric random access memory array is formed with bit line drivers and source line drivers formed below the ferroelectric random access memory array. A through via is formed using the same processes as the processes used to form individual memory cells within the ferroelectric random access memory array.
    Type: Grant
    Filed: August 10, 2023
    Date of Patent: June 25, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Lin, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20240203795
    Abstract: A semiconductor device includes a substrate, first and second semiconductor strips, a dummy fin structure, first and second channel layers, a gate structure, and crystalline and amorphous hard mask layers. The first and second semiconductor strips extend upwardly from the substrate and each has a length extending along a first direction. The dummy fin structure is laterally between the first and second semiconductor strips. The first and second channel layers extend in the first direction above the first and second semiconductor strips and are arranged in a second direction substantially perpendicular to the substrate. The crystalline hard mask layer extends upwardly from the dummy fin structure and has an U-shaped cross section. The amorphous hard mask layer is in the crystalline hard mask layer. The amorphous hard mask layer has an U-shaped cross section conformal to the U-shaped cross section of the crystalline hard mask layer.
    Type: Application
    Filed: March 4, 2024
    Publication date: June 20, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Ting KO, Sung-En LIN, Chi-On CHUI
  • Publication number: 20240204104
    Abstract: A semiconductor device and method of manufacture are provided. In embodiments a first liner is deposited to line a recess between a first semiconductor fin and a second semiconductor fin, the first liner comprising a first material. The first liner is annealed to transform the first material to a second material. A second liner is deposited to line the recess, the second liner comprising a third material. The second liner is annealed to transform the third material to a fourth material.
    Type: Application
    Filed: February 29, 2024
    Publication date: June 20, 2024
    Inventors: Wan-Yi Kao, Yu-Cheng Shiau, Chunyao Wang, Chih-Tang Peng, Yung-Cheng Lu, Chi On Chui
  • Patent number: 12015066
    Abstract: A method includes providing first and second channel layers in NMOS and PMOS regions respectively of a substrate; depositing a first layer comprising hafnium oxide over the first and second channel layers; forming a first dipole pattern over the second channel layer and not over the first channel layer; driving a first metal from the first dipole pattern into the first layer by annealing; removing the first dipole pattern; depositing a second layer comprising hafnium oxide over the first layer and over the first and second channel layers; forming a second dipole pattern over the second layer and the first channel layer and not over the second channel layer; driving a second metal from the second dipole pattern into the second layer by annealing; removing the second dipole pattern; and depositing a third layer comprising hafnium oxide over the second layer and over the first and the second channel layers.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: June 18, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Yuan Chang, Te-Yang Lai, Kuei-Lun Lin, Xiong-Fei Yu, Chi On Chui, Tsung-Da Lin, Cheng-Hao Hou
  • Patent number: 12015031
    Abstract: In an embodiment, a method includes: forming a first fin and a second fin extending from a semiconductor substrate; depositing a liner layer along a first sidewall of the first fin, a second sidewall of the second fin, and a top surface of the semiconductor substrate, the liner layer formed of silicon oxynitride having a nitrogen concentration; depositing a fill material on the liner layer, the fill material formed of silicon; annealing the liner layer and the fill material, the annealing converting the fill material to silicon oxide, the annealing decreasing the nitrogen concentration of the liner layer; and recessing the liner layer and the fill material to form an isolation region between the first fin and the second fin.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: June 18, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wan-Yi Kao, Szu-Ping Lee, Che-Hao Chang, Chun-Heng Chen, Yung-Cheng Lu, Chi On Chui