Patents by Inventor Chi-Wei Lan

Chi-Wei Lan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9169501
    Abstract: Disclosed is a method for producing biodegradable polymer and ethanol converted from carbon source by using recombinant microorganisms, comprising the steps of: (A) providing recombinant microorganisms transformed with plasmids containing at least a gene encoding for glycerol utilizing enzyme and a gene encoding for polyhydroxyalkanoate synthase; (B) culturing the recombinant microorganisms in a medium containing glycerol; (C) inducing expression of the genes of step (A), thereby obtaining polyhydroxyalkanoate and ethanol; and (D) recovering the polyhydroxyalkanoate and the ethanol; wherein the recombinant microorganisms have a glycerol utilization rate more than 90% (w/w), and have polyhydroxyalkanoate accumulated therein to a biomass content thereof at least 30% (w/w).
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: October 27, 2015
    Assignee: Yuan Ze University
    Inventors: Chi-Wei Lan, Ho-Shing Wu, Feng-Shen Chiu
  • Publication number: 20140295507
    Abstract: Disclosed is a method for producing biodegradable polymer and ethanol converted from carbon source by using recombinant microorganisms, comprising the steps of: (A) providing recombinant microorganisms transformed with plasmids containing at least a gene encoding for glycerol utilizing enzyme and a gene encoding for polyhydroxyalkanoate synthase; (B) culturing the recombinant microorganisms in a medium containing glycerol; (C) inducing expression of the genes of step (A), thereby obtaining polyhydroxyalkanoate and ethanol; and (D) recovering the polyhydroxyalkanoate and the ethanol; wherein the recombinant microorganisms have a glycerol utilization rate more than 90% (w/w), and have polyhydroxyalkanoate accumulated therein to a biomass content thereof at least 30% (w/w).
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventors: Chi-Wei LAN, Ho-Shing WU, Feng-Shen CHIU
  • Publication number: 20130302867
    Abstract: Disclosed is a method for producing biodegradable polymer and biomass fuel converted from carbon source by using recombinant microorganisms, comprising the steps of: (A) providing recombinant microorganisms transformed with plasmids containing at least a gene encoding for glycerol utilizing enzyme and a gene encoding for polyhydroxyalkanoate synthase; (B) culturing the recombinant microorganisms in a medium containing glycerol; (C) inducing expression of the genes of step (A), thereby obtaining polyhydroxyalkanoate and ethanol; and (D) recovering the polyhydroxyalkanoate and the ethanol; wherein the recombinant microorganisms have a glycerol utilization rate more than 90% (w/w), and have polyhydroxyalkanoate accumulated therein to a biomass content thereof at least 30% (w/w).
    Type: Application
    Filed: May 11, 2012
    Publication date: November 14, 2013
    Inventors: Chi-Wei Lan, Ho-Shing Wu, Feng-Shen Chiu
  • Publication number: 20130122559
    Abstract: A method for synthesizing polyhydroxyalkanoate using a microorganism includes providing a Ralstonia eutropha strain; providing a fermentation tank and adding crude glycerol into the fermentation tank; adding a nitrogen source into the fermentation tank to adjust a carbon to nitrogen (C/N) ratio to 20:1 to 150:1; controlling temperature of the fermentation tank to a temperature ranging from 20 to 45° C.; adding 5 to 20% by volume of the Ralstonia eutropha strain into the fermentation tank using a mixing speed of from 100 to 500 rpm, an aeration quantity of 0.5-2 vvm and a concentration of dissolved oxygen of 30 to 80%; fermenting contents of the fermentation tank for 48 to 96 hours to allow the Ralstonia eutropha strain to proliferate and to allow polyhydroxyalkanoate to be synthesized from the crude glycerol within cells of the Ralstonia eutropha strain; and disrupting the cells of the Ralstonia eutropha strain and extracting polyhydroxyalkanoate.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Applicant: YUAN ZE UNIVERSITY
    Inventors: Chi-Wei Lan, Cheng-Yung Chang