Patents by Inventor Chi Xiong

Chi Xiong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12332538
    Abstract: Techniques regarding quantum transducers are provided. For example, one or more embodiments described herein can include an apparatus that can comprise a superconducting microwave resonator having a microstrip architecture that can include a dielectric substrate positioned between a superconducting waveguide and a superconducting ground plane. The superconducting waveguide can have a first material composition. Also, the superconducting ground plane can have a second material composition that is distinct from the first material composition. Further, an optical resonator can be arranged with the dielectric substrate.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: June 17, 2025
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Abram L Falk, Chi Xiong, Swetha Kamlapurkar, Jason S. Orcutt
  • Publication number: 20250131304
    Abstract: Techniques are provided for performing an optically heralded entanglement process to entangle states of a first data quantum bit and a second data quantum bit into an entangled state of computational basis states comprising a ground state and a first excited state. An optically heralded entanglement process comprises performing a first optically heralded entanglement process to determine whether the entangled state of the first data quantum bit and the second data quantum bit excludes a state in which both the first data quantum bit and the second data quantum bit can be in the ground state, and performing a second optically heralded entanglement process to determine whether the entangled state of the first data quantum bit and the second data quantum bit excludes a state in which both the first data quantum bit and the second data quantum bit can be in the first excited state.
    Type: Application
    Filed: October 20, 2023
    Publication date: April 24, 2025
    Inventors: Abram L Falk, Jason S. Orcutt, Timothy Phung, Chi Xiong
  • Publication number: 20250110276
    Abstract: Devices and/or methods of fabrication facilitating suppression of embedded SiGe optical waveguides with low defectivity are provided. In an embodiment, a device can comprise a substrate comprising a trench within the substrate, wherein the trench comprises a base surface and sidewalls comprising the substrate; and a fully strained silicon-germanium (SiGe) structure located within the trench, wherein a bottom surface of the SiGe structure is in contact with the base surface, wherein side surfaces of the SiGe structure are in contact with the sidewalls, and wherein the SiGe structure is at least twice the critical thickness.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 3, 2025
    Inventors: Stephen W. Bedell, Jason S. Orcutt, Abram L Falk, Chi Xiong, Cihan Kurter, Ashutosh Rao
  • Patent number: 12197104
    Abstract: Devices and/or methods provided herein relate to providing conversion of photons between an optical domain and a microwave domain. An electronic structure can comprise a resonator assembly comprising a microwave resonator and an optical resonator, an optical pump waveguide that transmits an optical pump input to the resonator assembly, and an optical signal waveguide, separate from the optical pump waveguide, that transmits an optical signal relative to the resonator assembly. The electronic structure further can comprise a microwave signal waveguide that transmits a microwave signal relative to the resonator assembly. The optical pump waveguide can comprise a delay portion that delays receipt of the optical pump input to the resonator assembly through the optical pump waveguide to a time after reduction of a majority of decoherence of the resonator assembly caused by scattering of a portion of the optical pump input, which portion does not enter the optical pump waveguide.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: January 14, 2025
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Abram L Falk, Chi Xiong, Ryan Daniel Schilling, Jason S. Orcutt
  • Publication number: 20240337896
    Abstract: Techniques regarding quantum transducers are provided. For example, one or more embodiments described herein can include an apparatus that can comprise a superconducting microwave resonator having a microstrip architecture that can include a dielectric substrate positioned between a superconducting waveguide and a superconducting ground plane. The superconducting waveguide can have a first material composition. Also, the superconducting ground plane can have a second material composition that is distinct from the first material composition. Further, an optical resonator can be arranged with the dielectric substrate.
    Type: Application
    Filed: July 23, 2021
    Publication date: October 10, 2024
    Inventors: Abram L. Falk, Chi Xiong, SWETHA KAMLAPURKAR, Jason S. Orcutt
  • Patent number: 12015185
    Abstract: Techniques regarding quantum transducers are provided. For example, one or more embodiments described herein can include an apparatus that can include a superconducting microwave resonator having a microstrip architecture that includes a dielectric layer positioned between a superconducting waveguide and a ground plane. The apparatus can also include an optical resonator positioned within the dielectric layer.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: June 18, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Abram L Falk, Chi Xiong, Swetha Kamlapurkar, Hanhee Paik, Jason S. Orcutt
  • Publication number: 20240195512
    Abstract: Devices and/or methods provided herein relate to providing conversion of photons between an optical domain and a microwave domain. An electronic structure can comprise a resonator assembly comprising a microwave resonator and an optical resonator, an optical pump waveguide that transmits an optical pump input to the resonator assembly, and an optical signal waveguide, separate from the optical pump waveguide, that transmits an optical signal relative to the resonator assembly. The electronic structure further can comprise a microwave signal waveguide that transmits a microwave signal relative to the resonator assembly. The optical pump waveguide can comprise a delay portion that delays receipt of the optical pump input to the resonator assembly through the optical pump waveguide to a time after reduction of a majority of decoherence of the resonator assembly caused by scattering of a portion of the optical pump input, which portion does not enter the optical pump waveguide.
    Type: Application
    Filed: December 7, 2022
    Publication date: June 13, 2024
    Inventors: Abram L Falk, Chi Xiong, Ryan Daniel Schilling, Jason S. Orcutt
  • Patent number: 11940713
    Abstract: A quantum transducer device that comprises a microwave resonator component and optical resonator component that receives and transduce a set of optical photons and at least one of: a voltage pulse or modulated laser pulse, and generate a single microwave photon output.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: March 26, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Abram L Falk, Jason S. Orcutt, Chi Xiong
  • Patent number: 11657314
    Abstract: Techniques regarding microwave-to-optical quantum transducers are provided. For example, one or more embodiments described herein can include an apparatus that can include a microwave resonator on a dielectric substrate and adjacent to an optical resonator, and a photon barrier structure at least partially surrounding an optical resonator, wherein the photon barrier structure is configured to provide isolation of the microwave resonator from optical photons in the dielectric substrate outside the photon barrier structure.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: May 23, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chi Xiong, Jason S. Orcutt, Ricardo Alves Donaton, Stephen M. Gates, Swetha Kamlapurkar, Abram L Falk
  • Publication number: 20230145368
    Abstract: Techniques regarding microwave-to-optical quantum transducers are provided. For example, one or more embodiments described herein can include an apparatus that can include a microwave resonator on a dielectric substrate and adjacent to an optical resonator, and a photon barrier structure at least partially surrounding an optical resonator, wherein the photon barrier structure is configured to provide isolation of the microwave resonator from optical photons in the dielectric substrate outside the photon barrier structure.
    Type: Application
    Filed: March 3, 2021
    Publication date: May 11, 2023
    Inventors: Chi Xiong, Jason S. Orcutt, Ricardo Alves Donaton, Stephen M. Gates, SWETHA KAMLAPURKAR, Abram L Falk
  • Publication number: 20220285818
    Abstract: Techniques regarding quantum transducers are provided. For example, one or more embodiments described herein can include an apparatus that can include a superconducting microwave resonator having a microstrip architecture that includes a dielectric layer positioned between a superconducting waveguide and a ground plane. The apparatus can also include an optical resonator positioned within the dielectric layer.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 8, 2022
    Inventors: Abram L. Falk, Chi Xiong, Swetha Kamlapurkar, Hanhee Paik, Jason S. Orcutt
  • Publication number: 20220146905
    Abstract: A quantum transducer device that comprises a microwave resonator component and optical resonator component that receives and transduce a set of optical photons and at least one of: a voltage pulse or modulated laser pulse, and generate a single microwave photon output.
    Type: Application
    Filed: November 10, 2020
    Publication date: May 12, 2022
    Inventors: Abram L Falk, Jason S. Orcutt, Chi Xiong
  • Patent number: 11041803
    Abstract: A generalized feed-forward method for accurate tunable laser absorption spectroscopy includes generating a laser beam. The generated laser beam is directed down a reference path and a test/sample path. One or more parameters are extracted from the reference path. The one or more parameters, extracted from the reference path, are used as feed-forward, to adjust spectral analysis of the test/sample path to detect a composition and/or concentration of an analyte gas within the test/sample path. The extraction of the one or more parameters from the reference path and the spectral analysis of the test/sample path are performed substantially concurrently.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: June 22, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William Green, Matthias Dittberner, Chi Xiong, Eric Zhang, Gerard Wysocki
  • Publication number: 20210026066
    Abstract: Photonic circuits are disclosed having an efficient optical power distribution network. Laser chips (InP) having different wavelengths are flip-chip assembled near the center of a silicon photonic chip. Each InP die has multiple optical lanes, but a given die has only one wavelength. Waveguides formed in the photonic chip are optically connected to the lanes, and fan out to form multiple waveguide sets, where each waveguide set has one of the waveguides from each of the different wavelengths, i.e., one waveguide from each InP die. The waveguide network is optimized to minimize the number of crossings that any given waveguide may have, and no waveguide having a particular wavelength crosses another waveguide of the same wavelength. The unique arrangements of light sources and waveguides allows the use of a smaller number of more intense laser sources, particularly in applications such as performance-optimized datacenters where liquid cooling systems may be leveraged.
    Type: Application
    Filed: July 22, 2019
    Publication date: January 28, 2021
    Inventors: Tymon Barwicz, Douglas M. Gill, William M. Green, Jason S. Orcutt, Jessie C. Rosenberg, Eugen Schenfeld, Chi Xiong
  • Patent number: 10895682
    Abstract: Photonic circuits are disclosed having an efficient optical power distribution network. Laser chips (InP) having different wavelengths are flip-chip assembled near the center of a silicon photonic chip. Each InP die has multiple optical lanes, but a given die has only one wavelength. Waveguides formed in the photonic chip are optically connected to the lanes, and fan out to form multiple waveguide sets, where each waveguide set has one of the waveguides from each of the different wavelengths, i.e., one waveguide from each InP die. The waveguide network is optimized to minimize the number of crossings that any given waveguide may have, and no waveguide having a particular wavelength crosses another waveguide of the same wavelength. The unique arrangements of light sources and waveguides allows the use of a smaller number of more intense laser sources, particularly in applications such as performance-optimized datacenters where liquid cooling systems may be leveraged.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: January 19, 2021
    Assignee: International Business Machines Corporation
    Inventors: Tymon Barwicz, Douglas M. Gill, William M. Green, Jason S. Orcutt, Jessie C. Rosenberg, Eugen Schenfeld, Chi Xiong
  • Publication number: 20200309690
    Abstract: A generalized feed-forward method for accurate tunable laser absorption spectroscopy includes generating a laser beam. The generated laser beam is directed down a reference path and a test/sample path. One or more parameters are extracted from the reference path. The one or more parameters, extracted from the reference path, are used as feed-forward, to adjust spectral analysis of the test/sample path to detect a composition and/or concentration of an analyte gas within the test/sample path. The extraction of the one or more parameters from the reference path and the spectral analysis of the test/sample path are performed substantially concurrently.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 1, 2020
    Inventors: William Green, Matthias Dittberner, Chi Xiong, Eric Zhang, Gerard Wysocki
  • Patent number: 10677726
    Abstract: A tunable diode laser absorption spectroscopy device includes a tunable diode laser. A laser driver is configured to drive the diode laser and ramp it within a particular frequency range. An analyte gas container, a reference gas container, and a fringe generating device are configured to receive the laser therethrough. An optical detector is configured to detect the laser after it has passed through the analyte gas container and/or the reference gas container, and the in-line fringe generating device. An acquisition card is configured to sample an output of the optical detector. A spectral analyzer is configured to receive output data from the acquisition card, determine a spectrum of the output data, decouple the fringe spectrum from the measured spectrum, calibrate the spectrum based on an expected ideal spectrum of both the fringe and reference gas, and determine a composition of the analyte based on the calibrated spectrum.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: June 9, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William Green, Chu Cheyenne Teng, Gerard Wysocki, Chi Xiong, Eric Zhang
  • Publication number: 20190187051
    Abstract: A tunable diode laser absorption spectroscopy device includes a tunable diode laser. A laser driver is configured to drive the diode laser and ramp it within a particular frequency range. An analyte gas container, a reference gas container, and a fringe generating device are configured to receive the laser therethrough. An optical detector is configured to detect the laser after it has passed through the analyte gas container and/or the reference gas container, and the in-line fringe generating device. An acquisition card is configured to sample an output of the optical detector. A spectral analyzer is configured to receive output data from the acquisition card, determine a spectrum of the output data, decouple the fringe spectrum from the measured spectrum, calibrate the spectrum based on an expected ideal spectrum of both the fringe and reference gas, and determine a composition of the analyte based on the calibrated spectrum.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 20, 2019
    Inventors: William GREEN, Chu Cheyenne TENG, Gerard WYSOCKI, Chi XIONG, Eric ZHANG
  • Patent number: 10203525
    Abstract: Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: February 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Douglas M. Gill, Chi Xiong
  • Patent number: 10197819
    Abstract: Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: February 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Douglas M. Gill, Chi Xiong