Patents by Inventor Chi-Yang Chao

Chi-Yang Chao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230197953
    Abstract: The present invention provides an electrode material and production method thereof. The electrode material comprises: an electrode active material; and an elastic layer coated on the electrode active material, wherein the elastic layer comprises the elements of C, H, O, N, S and the electrode material has the characteristic peaks at mass-to-charge ratio (m/z) 261±0.5, (m/z) 155±0.5, (m/z) 80±0.5, (m/z) 32±0.5, and (m/z) 14±0.5 using TOF-SIMS with the primary ion of Bi1+.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Inventors: CHENG-YEN LU, CHI-YANG CHAO, Nae-Lih WU, BING-JOE HWANG, Arno Kwade, Tobias Placke, Martin Winter, Jannes Müller
  • Patent number: 10454112
    Abstract: An anode and a lithium ion battery employing the same are provided. The anode includes a lithium-containing layer and a single-ion conductive layer. The single-ion conductive layer includes an inorganic particle, a single-ion conductor polymer, and a binder. The single-ion conductor polymer has a first repeat unit of Formula (I), a second repeat unit of Formula (II), a third repeat unit of Formula (III), and a fourth repeat unit of Formula (IV) wherein R1 is O?M+, SO3?M+, N(SO2F)?M+, N(SO2CF3)?M+, N(SO2CF2CF3)?M+, COO?M+, or PO4?M+; M+ is Li+, Na+, K+, Cs+, or a combination thereof; and R2 is CH3, CH2CH3, or CH2CH2OCH2CH3. In particular, the weight ratio of the inorganic particle to the sum of the single-ion conductor polymer and the binder is from 4:1 to 9:1, and the weight ratio of the binder to the single-ion conductor polymer is from 1:1 to 9:1.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: October 22, 2019
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wei-Hsin Wu, Sheng-Hui Wu, Chi-Yang Chao, Kun-Lin Liu, Chia-Chen Fang
  • Publication number: 20190207222
    Abstract: An anode and a lithium ion battery employing the same are provided. The anode includes a lithium-containing layer and a single-ion conductive layer. The single-ion conductive layer includes an inorganic particle, a single-ion conductor polymer, and a binder. The single-ion conductor polymer has a first repeat unit of Formula (I), a second repeat unit of Formula (II), a third repeat unit of Formula (III), and a fourth repeat unit of Formula (IV) wherein R1 is O?M+, SO3?M?, N(SO2F)?M+, N(SO2CF3)?M+, N(SO2CF2CF3)?M+, COO?M+, or PO4?M+; M+ is Li+, Na+, K+, Cs+, or a combination thereof; and R2 is CH3, CH2CH3, or CH2CH2OCH2CH3. In particular, the weight ratio of the inorganic particle to the sum of the single-ion conductor polymer and the binder is from 4:1 to 9:1, and the weight ratio of the binder to the single-ion conductor polymer is from 1:1 to 9:1.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Wei-Hsin WU, Sheng-Hui WU, Chi-Yang CHAO, Kun-Lin LIU, Chia-Chen FANG
  • Patent number: 9590269
    Abstract: A polyelectrolyte includes a first segment and a second segment, wherein the structure of the first segment is at least one of formula (1) and formula (2); the structure of the second segment is at least one of formula (3) and formula (4). The polyelectrolyte undergoes microphase separation to form a nanoscale ordered self-assembled microstructure.
    Type: Grant
    Filed: December 27, 2014
    Date of Patent: March 7, 2017
    Assignees: Industrial Technology Research Institute, National Taiwan University
    Inventors: Chung-Hsiang Chao, Li-Duan Tsai, Chia-Chen Fang, Chih-Ching Chang, Chi-Yang Chao, Kun-Lin Liu
  • Publication number: 20150183897
    Abstract: A polyelectrolyte includes a first segment and a second segment, wherein the structure of the first segment is at least one of formula (1) and formula (2); the structure of the second segment is at least one of formula (3) and formula (4). The polyelectrolyte undergoes microphase separation to form a nanoscale ordered self-assembled microstructure.
    Type: Application
    Filed: December 27, 2014
    Publication date: July 2, 2015
    Inventors: Chung-Hsiang Chao, Li-Duan Tsai, Chia-Chen Fang, Chih-Ching Chang, Chi-Yang Chao, Kun-Lin Liu