Patents by Inventor Chia-Chang Lin

Chia-Chang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128876
    Abstract: A switching control circuit for use in controlling a resonant flyback power converter generates a first driving signal and a second driving signal. The first driving signal is configured to turn on the first transistor to generate a first current to magnetize a transformer and charge a resonant capacitor. The transformer and charge a resonant capacitor are connected in series. The second driving signal is configured to turn on the second transistor to generate a second current to discharge the resonant capacitor. During a power-on period of the resonant flyback power converter, the second driving signal includes a plurality of short-pulses configured to turn on the second transistor for discharging the resonant capacitor. A pulse-width of the short-pulses of the second driving signal is short to an extent that the second current does not exceed a current limit threshold.
    Type: Application
    Filed: June 15, 2023
    Publication date: April 18, 2024
    Inventors: Yu-Chang Chen, Ta-Yung Yang, Kun-Yu Lin, Fu-Ciao Syu, Chia-Hsien Yang, Hsin-Yi Wu
  • Publication number: 20240120844
    Abstract: A resonant flyback power converter includes: a first and a second transistors which form a half-bridge circuit for switching a transformer and a resonant capacitor to generate an output voltage; a current-sense device for sensing a switching current of the half-bridge circuit to generate a current-sense signal; and a switching control circuit generating a first and a second driving signals for controlling the first and the second transistors. The turn-on of the first driving signal controls the half-bridge circuit to generate a positive current to magnetize the transformer and charge the resonant capacitor. The turn-on of the second driving signal controls the half-bridge circuit to generate a negative current to discharge the resonant capacitor. The switching control circuit turns off the first transistor when the positive current exceeds a positive-over-current threshold, and/or, turns off the second transistor when the negative current exceeds a negative-over-current threshold.
    Type: Application
    Filed: April 10, 2023
    Publication date: April 11, 2024
    Inventors: Kun-Yu LIN, Ta-Yung YANG, Yu-Chang CHEN, Hsin-Yi WU, Fu-Ciao SYU, Chia-Hsien YANG
  • Publication number: 20240122078
    Abstract: A semiconductor memory device includes a substrate having a conductor region thereon, an interlayer dielectric layer on the substrate, and a conductive via electrically connected to the conductor region. The conductive via has a lower portion embedded in the interlayer dielectric layer and an upper portion protruding from a top surface of the interlayer dielectric layer. The upper portion has a rounded top surface. A storage structure conformally covers the rounded top surface.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Chang Hsu, Tang-Chun Weng, Cheng-Yi Lin, Yung-Shen Chen, Chia-Hung Lin
  • Publication number: 20240107414
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for switching a secondary cell to a primary cell. A user equipment (UE) monitors a first radio condition of the UE for beams of a primary cell and a second radio condition for beams of one or more secondary cells configured for the UE in carrier aggregation. The UE transmits a request to configure a candidate beam of at least one candidate secondary cell as a new primary cell in response to the first radio condition not satisfying a first threshold and the second radio condition for the at least one candidate secondary cell satisfying a second threshold. A base station determines to reconfigure at least one secondary cell as the new primary cell. The base station and the UE perform a handover of the UE to the new primary cell.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Inventors: Yu-Chieh HUANG, Kuhn-Chang LIN, Jen-Chun CHANG, Wen-Hsin HSIA, Chia-Jou LU, Sheng-Chih WANG, Chenghsin LIN, Yeong Leong CHOO, Chun-Hsiang CHIU, Chihhung HSIEH, Kai-Chun CHENG, Chung Wei LIN
  • Publication number: 20240094625
    Abstract: A method of making a semiconductor device includes forming at least one fiducial mark on a photomask. The method further includes defining a pattern including a plurality of sub-patterns on the photomask in a pattern region. The defining the pattern includes defining a first sub-pattern of the plurality of sub-patterns having a first spacing from a second sub-pattern of the plurality of sub-patterns, wherein the first spacing is different from a second spacing between the second sub-pattern and a third sub-pattern of the plurality of sub-patterns.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Hsin-Chang LEE, Ping-Hsun LIN, Chih-Cheng LIN, Chia-Jen CHEN
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11935981
    Abstract: A photo-detecting device includes a first semiconductor layer with a first dopant, a light-absorbing layer, a second semiconductor layer, and a semiconductor contact layer. The second semiconductor layer is located on the first semiconductor layer and has a first region and a second region, the light absorbing layer is located between the first semiconductor layer and the second semiconductor layer and has a third region and a fourth region, the semiconductor contact layer contacts the first region. The first region includes a second dopant and a third dopant, the second region includes second dopant, and the third region includes third dopant. The semiconductor contact layer has a first thickness greater than 50 ? and smaller than 1000 ?.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 19, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Chu-Jih Su, Chia-Hsiang Chou, Wei-Chih Peng, Wen-Luh Liao, Chao-Shun Huang, Hsuan-Le Lin, Shih-Chang Lee, Mei Chun Liu, Chen Ou
  • Patent number: 11923433
    Abstract: A method for manufacturing a semiconductor device includes forming a first dielectric layer over a semiconductor fin. The method includes forming a second dielectric layer over the first dielectric layer. The method includes exposing a portion of the first dielectric layer. The method includes oxidizing a surface of the second dielectric layer while limiting oxidation on the exposed portion of the first dielectric layer.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Liang Pan, Yungtzu Chen, Chung-Chieh Lee, Yung-Chang Hsu, Chia-Yang Hung, Po-Chuan Wang, Guan-Xuan Chen, Huan-Just Lin
  • Patent number: 11456753
    Abstract: A signal processor includes a signal receiving circuit, a pre-processing circuit, a period acquisition circuit, and a decoding circuit. The signal receiving circuit is configured to receive an input signal. The pre-processing circuit is configured to generate a square wave signal according to the input signal. The period acquisition circuit is configured to capture several periods of the square wave signal. The several signal periods includes several signal period groups, and each of the several signal period groups includes at least two signal periods of the several signal periods. The at least two signal periods are adjacent to each other. The decoding circuit is coupled to the period acquisition circuit and is configured to perform decoding according to a time length and a number of times of voltage value change of the several signal period groups to obtain a decoding result.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: September 27, 2022
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Yuan-Jih Chu, Bo-Cheng Lin, Chia-Chang Lin, Li-Chung Chen
  • Publication number: 20220116051
    Abstract: A signal processor includes a signal receiving circuit, a pre-processing circuit, a period acquisition circuit, and a decoding circuit. The signal receiving circuit is configured to receive an input signal. The pre-processing circuit is configured to generate a square wave signal according to the input signal. The period acquisition circuit is configured to capture several periods of the square wave signal. The several signal periods includes several signal period groups, and each of the several signal period groups includes at least two signal periods of the several signal periods. The at least two signal periods are adjacent to each other. The decoding circuit is coupled to the period acquisition circuit and is configured to perform decoding according to a time length and a number of times of voltage value change of the several signal period groups to obtain a decoding result.
    Type: Application
    Filed: March 16, 2021
    Publication date: April 14, 2022
    Inventors: Yuan-Jih CHU, Bo-Cheng Lin, Chia-Chang Lin, Li-Chung Chen
  • Patent number: 10791006
    Abstract: An electronic system includes a feedforward equalizer, a feedback equalizer, an RFI canceler, and a control circuit. The feedforward equalizer and the feedback equalizer are configured to adjust the channel response of a transmission channel in the electronic system. The RFI canceler is configured to cancel the RFI presence in the electronic system. When the RFI canceler is off, the controller is configured to turn on the RFI canceler according to a signal error value before RFI cancelation, an error term of the electronic system, or an SNR of the electronic system.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: September 29, 2020
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chia-Chang Lin, Li-Chung Chen, Ching-Yao Su, Yuan-Jih Chu
  • Publication number: 20200287017
    Abstract: A gate stack is described that uses anti-ferroelectric material (e.g., Si, La, N, Al, Zr, Ge, Y doped HfO2) or ferroelectric material (e.g., Si, La, N, Al, Zr, Ge, Y doped HfO2, perovskite ferroelectric such as NH4H2PO4, KH2PO4, LiNb03, LiTaO3, BaTiO3, PbTiO3, Pb (Zr,Ti) O3, (Pb,La)TiO3, and (Pb,La)(Zr,Ti)O3) which reduces write voltage, improves endurance, and increases retention. The gate stack of comprises strained anti-FE or FE material and depolarized anti-FE or FE. The endurance of the FE transistor is further improved by using a higher K (constant) dielectric (e.g., SiO2, Al2O3, HfO2, Ta2O3, La2O3) in the gate stack. High K effects may also be achieved by depolarizing the FE or FE oxide in the transistor gate stack.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Sou-Chi CHANG, Chia-Chang LIN, Seung Hoon SUNG, Ashish Verma PENUMATCHA, Nazila HARATIPOURA, Owen LOH, Jack KAVALIEROS, Uygar AVCI, Ian YOUNG
  • Publication number: 20130087096
    Abstract: An apparatus for applying dye material on an electrode to form a dye-sensitized solar cell includes a rotary unit and an electrode holding unit disposed around the rotary unit. The rotary unit is rotatable about a rotary axis and includes a dye tank for receiving liquid dye therein and a dye breaking unit disposed around the dye tank. The dye tank permits flow of the liquid dye therein to the dye breaking unit. The dye breaking unit breaks the liquid dye flowing from the dye tank into liquid droplets that move in the dye breaking unit due to centrifugal force. The rotary unit permits the liquid droplets to exit therefrom. The liquid droplets exiting the rotary unit are propelled toward an electrode on the electrode holding unit during rotation of the rotary unit.
    Type: Application
    Filed: June 11, 2012
    Publication date: April 11, 2013
    Applicant: CHANG GUNG UNIVERSITY
    Inventors: Hsiu-Po KUO, Chun-Te Wu, Chia-Chang Lin
  • Patent number: 7671554
    Abstract: The present invention relates to a motor driving system. The motor driving system includes a motor, a transmission member, a follower member, a position-detecting light emitter, a position-detecting light receiver, and a positioning-status sensing element. The positioning-status sensing element includes a plurality of notches or openings. The positioning-status sensing element is moved between the position-detecting light emitter and the position-detecting light receiver such that a light beam emitted from the position-detecting light emitter is successively penetrated through the notches or openings to be received by the position-detecting light receiver. According to the light-receiving status of the position-detecting light receiver, the speed of the motor is reduced.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: March 2, 2010
    Assignee: Primax Electronics, Ltd.
    Inventors: Chia-Chang Lin, Chih-Hsun Lin
  • Publication number: 20090108787
    Abstract: The present invention relates to a motor driving system. The motor driving system includes a motor, a transmission member, a follower member, a position-detecting light emitter, a position-detecting light receiver, and a positioning-status sensing element. The positioning-status sensing element includes a plurality of notches or openings. The positioning-status sensing element is moved between the position-detecting light emitter and the position-detecting light receiver such that a light beam emitted from the position-detecting light emitter is successively penetrated through the notches or openings to be received by the position-detecting light receiver. According to the light-receiving status of the position-detecting light receiver, the speed of the motor is reduced.
    Type: Application
    Filed: December 18, 2007
    Publication date: April 30, 2009
    Applicant: PRIMAX ELECTRONICS LTD.
    Inventors: Chia-Chang Lin, Chih-Hsun Lin
  • Publication number: 20060090647
    Abstract: The present invention discloses a method for catching particles having diameters size down to the nanometer level including a first step of increasing particle diameters of particles contained in an outlet gas from a fabrication process of nano-particles or an exhaust from a combustion; and a second step of introducing the resulting effluent from the first step into a rotating packed bed. The first step involves contacting the gas/exhaust with droplets or water vapor, creating collision of the nano-particles with the droplets or condensation of water vapor using the nano-particles as condensation nuclei, so that the size of the nano-particles increases to the micro level. The second step uses the minute water drops generated from and the hindrance of the rotating packed bed to catch the micro-particles in the gas/exhaust under a relatively high centrifugal force.
    Type: Application
    Filed: December 3, 2004
    Publication date: May 4, 2006
    Applicant: Industrial Technology Research Institute
    Inventors: Chia-Chang Lin, Shu-Kang Hsu, Wen-Tzong Liu, I-Min Tseng
  • Patent number: 6884401
    Abstract: A high viscosity liquid is fed into a rotation pack bed at a position with a distance far enough from a rotation axis, creating a centrifugal force exerted on the high viscosity liquid overwhelming a drag thereof, so that it can flow radially through the rotation pack bed. A high pressure gas is introduced into the rotation pack bed peripherally and/or a suction force source is connected to a position near the rotation axis, so that a volatile component contained in the high viscosity fluid is entrained in the gas counter currently flowing through the rotation pack bed and withdrawn from the position near the rotation axis, or the volatile component exits from the position near the rotation axis in gas phase, and thus the volatile component is removed from the high viscosity liquid. A second fluid can also be fed into the rotation pack bed to react with the high viscosity liquid, so that a reaction product is formed, and a volatile side product is removed at the same time.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: April 26, 2005
    Assignee: Industiral Technology Research Institute
    Inventors: Sheng Yang, Chia-Chang Lin, I-Min Tseng, Wen-Tzong Liu, Hua-Tang Yu
  • Publication number: 20050022666
    Abstract: A method is used to remove an unreacted alcohol from an ester product mixture by a gas stripping. The method involves the feeding of the ester product mixture into proximity of an axis of a rotating packed bed, so as to enable the ester product mixture to flow radially to come in contact with a gas which is introduced into the rotating packed bed. The unreacted alcohol and any other volatile component of low molecular weight are thus stripped from the ester product mixture by the gas entrainment, thereby resulting in production of a purified ester product which is collected at the bottom of the rotating packed bed. The unreacted alcohol and the volatile component, which are entrained in the gas, are discharged via an exit located at the top of the rotating packed bed.
    Type: Application
    Filed: July 29, 2003
    Publication date: February 3, 2005
    Applicant: Industrial Technology Research Institute
    Inventors: Wen-Tzong Liu, Chia-Chang Lin, Sheng Yang, Tsung-Jen Ho, Hua-Tang Yu
  • Publication number: 20040015003
    Abstract: A high viscosity liquid is fed into a rotation pack bed at a position with a distance far enough from a rotation axis, creating a centrifugal force exerted on the high viscosity liquid overwhelming a drag thereof, so that it can flow radially through the rotation pack bed. A high pressure gas is introduced into the rotation pack bed peripherally and/or a suction force source is connected to a position near the rotation axis, so that a volatile component contained in the high viscosity fluid is entrained in the gas counter currently flowing through the rotation pack bed and withdrawn from the position near the rotation axis, or the volatile component exits from the position near the rotation axis in gas phase, and thus the volatile component is removed from the high viscosity liquid. A second fluid can also be fed into the rotation pack bed to react with the high viscosity liquid, so that a reaction product is formed, and a volatile side product is removed at the same time.
    Type: Application
    Filed: July 17, 2002
    Publication date: January 22, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Sheng Yang, Chia-Chang Lin, I-Min Tseng, Wen-Tzong Liu, Hua-Tang Yu