Patents by Inventor Chia-Chieh Shen
Chia-Chieh Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12204163Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.Type: GrantFiled: February 5, 2024Date of Patent: January 21, 2025Assignee: TDK TAIWAN CORP.Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
-
Patent number: 11482717Abstract: A dehydrogenation method for hydrogen storage materials, which is executed by a fuel cell system. The fuel cell system includes a hydrogen storage material tank, a heating unit, a fuel cell, a pump, a water thermal management unit and a heat recovery unit. The described dehydrogenation method utilizes the heating unit and the heat recovery unit to provide thermal energy to the hydrogen storage material tank, so that hydrogen storage material is heated to the dehydrogenation temperature. The pump extracts hydrogen from the hydrogen storage material tank, so that the hydrogen storage material is under negative pressure (i.e. H2 absolute pressure below 1 atm), according to which the hydrogen storage material is dehydrogenated, and the dehydrogenation efficiency and the amount of hydrogen release are improved. The method n can reduce the dehydrogenation temperature of the hydrogen storage material, and reduce the thermal energy consumption for heating the hydrogen storage material.Type: GrantFiled: March 31, 2021Date of Patent: October 25, 2022Inventors: Chia-Chieh Shen, Shih-Hung Chan, Fang-Bor Weng, Ho Chun Cheung, Yi-Hsuan Lin, Mei-Chin Chen, Jyun-Wei Chen, Ya-Che Wu, Han-Wen Liu, Kuan-Lin Chen, Jin-Xun Zhang
-
Publication number: 20220093945Abstract: A dehydrogenation method for hydrogen storage materials, which is executed by a fuel cell system. The fuel cell system includes a hydrogen storage material tank, a heating unit, a fuel cell, a pump, a water thermal management unit and a heat recovery unit. The described dehydrogenation method utilizes the heating unit and the heat recovery unit to provide thermal energy to the hydrogen storage material tank, so that hydrogen storage material is heated to the dehydrogenation temperature. The pump extracts hydrogen from the hydrogen storage material tank, so that the hydrogen storage material is under negative pressure (i.e. H2 absolute pressure below 1 atm), according to which the hydrogen storage material is dehydrogenated, and the dehydrogenation efficiency and the amount of hydrogen release are improved. The method n can reduce the dehydrogenation temperature of the hydrogen storage material, and reduce the thermal energy consumption for heating the hydrogen storage material.Type: ApplicationFiled: March 31, 2021Publication date: March 24, 2022Inventors: Chia-Chieh SHEN, Shih-Hung CHAN, Fang-Bor WENG, Ho Chun CHEUNG, Yi-Hsuan LIN, Mei-Chin CHEN, Jyun-Wei CHEN, Ya-Che WU, Han-Wen LIU, Kuan-Lin CHEN, Jin-Xun ZHANG
-
Patent number: 8691590Abstract: A hydrogen storage material analyzer along with its analysis and activation methods, the hydrogen storage material analyzer including a H2 absorption-desorption cycling tester, a temperature-programmed desorption spectrometer, a specimen holder and a temperature-controlled furnace.Type: GrantFiled: March 2, 2011Date of Patent: April 8, 2014Assignee: Yuan Ze UniversityInventors: Chia-Chieh Shen, Tsong-Pyng Perng, Hsueh-Chih Li
-
Publication number: 20120225009Abstract: A hydrogen storage material analyzer along with its analysis and activation methods, the hydrogen storage material analyzer including a H2 absorption-desorption cycling tester, a temperature-programmed desorption spectrometer, a specimen holder and a temperature-controlled furnace. With this hydrogen storage material analyzer, a complete set of instruments can be used to implement simultaneously cyclic hydrogenation-dehydrogenation test and thermodynamic desorption analyses, thus improving the working efficiency and analysis accuracy.Type: ApplicationFiled: March 2, 2011Publication date: September 6, 2012Applicant: YUAN ZE UNIVERSITYInventors: Chia-Chieh Shen, Perng Tsong-Pyng, Hsueh-Chih Li
-
Patent number: 7485387Abstract: The present invention provides a fuel cell module compatible with a dry cell. The fuel cell module includes an enclosure, a power generating unit, a hydrogen storage unit and positive/negative output ends. The hollow enclosure has an internal space, and is provided with some preset through-holes, allowing external oxygen to enter into the space. The power generating unit and hydrogen storage unit are mounted into the space of the enclosure. Positive and negative output ends are placed at both sides or adjacent at one side of the enclosure, thereby guiding the positive and negative charge generated by the power generating unit; since the fuel cell modules are compatible with existing conventional dry cells. These modules are widely applied to existing electrical or electronic products.Type: GrantFiled: April 3, 2007Date of Patent: February 3, 2009Assignee: Yuan Ze UniveersityInventors: Che-Ping Chou, Chien-Fu Kuo, Chia-Chieh Shen, Tsong-Pyng Perng, Fang-Bor Weng, Ay Su, Po-Hsien Chou, Pai-Ho Hsu
-
Publication number: 20080248366Abstract: The present invention is a fuel cell with a combined fuel supply unit and power generating unit. The fuel cell includes a fuel supply unit, a power generating unit, and an enclosure. The fuel supply or fuel storage unit is incorporated laterally or internally into the power generating unit, thereby shortening the fuel pipeline. The performance of the fuel cell is improved, and the space required for fuel cell is reduced for greater applicability.Type: ApplicationFiled: April 3, 2007Publication date: October 9, 2008Applicant: NATIONAL TSING HUA UNIVERSITYInventors: Che-Ping CHOU, Chien-Fu Kuo, Chia-Chieh Shen, Tsong-Pyng Perng, Fang-Bor Weng, Ay Su, Po-Hsien Chou, Pai-Ho Hsu
-
Publication number: 20080248367Abstract: The present invention provides a fuel cell module compatible with a dry cell. The fuel cell module includes an enclosure, a power generating unit, a hydrogen storage unit and positive/negative output ends. The hollow enclosure has an internal space, and is provided with some preset through-holes, allowing external oxygen to enter into the space. The power generating unit and hydrogen storage unit are mounted into the space of the enclosure. Positive and negative output ends are placed at both sides or adjacent at one side of the enclosure, thereby guiding the positive and negative charge generated by the power generating unit; since the fuel cell modules are compatible with existing conventional dry cells. These modules are widely applied to existing electrical or electronic products.Type: ApplicationFiled: April 3, 2007Publication date: October 9, 2008Applicant: YUAN ZE UNIVERSITYInventors: Che-Ping CHOU, Chien-Fu Kuo, Chia-Chieh Shen, Tsong-Pyng Perng, Fang-Bor Weng, Ay Su, Po-Hsien Chou, Pai-Ho Hsu
-
Publication number: 20080160383Abstract: The present invention relates to a fuel cell module with a thermal feedback mechanism. The fuel cell module includes a hydrogen storage container, a fuel cell body and a housing. The hydrogen storage container has a tank, a valve, and hydrogen storage alloy. The fuel cell body is integrated with the hydrogen storage container, such that the electricity-generating part of the fuel cell body faces the hydrogen storage container. Furthermore, heat generated from the electrochemical reaction can be fed back to the hydrogen storage container. This heat could increase the temperature of the hydrogen storage container, leading to a more stable discharge reaction and subsequently improving the performance of the fuel cell.Type: ApplicationFiled: December 28, 2006Publication date: July 3, 2008Applicant: NATIONAL TSING HUA UNIVERSITYInventors: Chia-Chieh SHEN, Justin C.P. CHOU, Tsong-Pyng PERNG