Patents by Inventor Chia-Fu Chou

Chia-Fu Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955397
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a substrate, a channel layer, a barrier layer, a compound semiconductor layer, a gate electrode, and a stack of dielectric layers. The channel layer is disposed on the substrate. The barrier layer is disposed on the channel layer. The compound semiconductor layer is disposed on the barrier layer. The gate electrode is disposed on the compound semiconductor layer. The stack of dielectric layers is disposed on the gate electrode. The stack of dielectric layers includes layers having different etching rates.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: April 9, 2024
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shin-Cheng Lin, Cheng-Wei Chou, Ting-En Hsieh, Yi-Han Huang, Kwang-Ming Lin, Yung-Fong Lin, Cheng-Tao Chou, Chi-Fu Lee, Chia-Lin Chen, Shu-Wen Chang
  • Patent number: 11932973
    Abstract: A method for manufacturing a polymer-based fibrous scaffold is disclosed. The method includes the following step: providing an electrospinning device comprising a collector; and injecting a polymer solution into the electrospinning device to produce a single jet fiber, wherein the single jet fiber is piled on the collector to form a fibrous scaffold.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: March 19, 2024
    Assignee: ACADEMIA SINICA
    Inventors: Chia-Fu Chou, Balchandar Navaneethan
  • Patent number: 11859237
    Abstract: A method for sizing a DNA molecule is disclosed, which comprises the following steps of: providing a DNA sizing device, comprising: a cover substrate; a substrate disposed on the cover substrate and comprising a first hole and a second hole; and a first slit-like channel disposed between the cover substrate and the substrate, wherein two ends of the first slit-like channel respectively connects to the first hole and the second hole; loading a sample comprising a DNA molecule to the first slit-like channel through the first hole, wherein the DNA molecule moves in a direction from the first hole to the second hole; detecting and recording an intensity and an area of a distribution of the DNA molecule; and analyzing the intensity and the area to obtain the size of a DNA molecule.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: January 2, 2024
    Assignee: ACADEMIA SINICA
    Inventors: Chia-Fu Chou, Jia-Wei Yeh, Yii-Lih Lin
  • Publication number: 20220136145
    Abstract: A method for manufacturing a polymer-based fibrous scaffold is disclosed. The method includes the following step: providing an electrospinning device comprising a collector; and injecting a polymer solution into the electrospinning device to produce a single jet fiber, wherein the single jet fiber is piled on the collector to form a fibrous scaffold.
    Type: Application
    Filed: October 27, 2021
    Publication date: May 5, 2022
    Inventors: Chia-Fu CHOU, Balchandar NAVANEETHAN
  • Publication number: 20220099673
    Abstract: A biosensor is provided, which comprises: a substrate; a working electrode disposed on the substrate and comprising a graphene layer; a counter electrode disposed on the substrate and adjacent to the working electrode; a reference electrode disposed on the substrate and adjacent to the working electrode; and a bio-recognition layer disposed on the working electrode. In addition, a bio-sensing system comprising the aforesaid biosensor and a method for preparing the aforesaid biosensor are also provided.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 31, 2022
    Inventors: Chia-Fu CHOU, Stalin KARUPPIAH
  • Publication number: 20200149088
    Abstract: A method for sizing a DNA molecule is disclosed, which comprises the following steps of: providing a DNA sizing device, comprising: a cover substrate; a substrate disposed on the cover substrate and comprising a first hole and a second hole; and a first slit-like channel disposed between the cover substrate and the substrate, wherein two ends of the first slit-like channel respectively connects to the first hole and the second hole; loading a sample comprising a DNA molecule to the first slit-like channel through the first hole, wherein the DNA molecule moves in a direction from the first hole to the second hole; detecting and recording an intensity and an area of a distribution of the DNA molecule; and analyzing the intensity and the area to obtain the size of a DNA molecule.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 14, 2020
    Inventors: Chia-Fu CHOU, Jia-Wei YEH, Yii-Lih LIN
  • Patent number: 9958396
    Abstract: A sensing device applied to an analyte molecule of a liquid sample and a buffer flow has at least one first inlet, at least one second inlet, a micro-flow channel, and at least one immobilization element. The first inlet is for inputting the liquid sample. The second inlet is for inputting the buffer flow. The micro-flow channel communicates with the first inlet and the second inlet. The immobilization element is for immobilizing sensing molecules for the analyte molecules. The analyte sample flow and the buffer flow, in the reverse direction, in the micro-flow channel enable the association and disassociation kinetics to be obtained. The present invention further provides a sensing system and a sensing method using the sensing device.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: May 1, 2018
    Assignees: Academia Sinica, Centre National De La Recherche Scientifique
    Inventors: Chia-Fu Chou, Thierry Leichle, Yii-Lih Lin, Pattamon Teerapanich
  • Patent number: 9915614
    Abstract: Methods, systems, and devices are disclosed for molecular capture, manipulation, and analysis. In one aspect, a device to aggregate and characterize particles in a fluid includes an electrically insulative substrate including a channel to carry an electrically conducting fluid containing particles, electrodes located in the channel forming a nanoscale opening and including an insulating layer over their surface at the opening, a first circuit to apply a non-uniform ac electric field and a dc bias signal across the electrodes, in which the applied non-uniform ac electric field produces a positive dielectrophoretic force to aggregate the particles in a trapping region including the opening and adjacent region, a second circuit to detect changes in a dc current caused by at least some of the particles in the trapping region, and an optical device that directs a coherent light beam on the opening to determine Raman spectra of the particles in the trapping region.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 13, 2018
    Assignees: ACADEMIA SINICA, MAX-PLANCK-INSTITUT FUR EISENFORSCHUNG GMBH
    Inventors: Chia-Fu Chou, Lesser-Rojas Leonardo, Ming-Lee Chu, Andreas Erbe
  • Patent number: 9555412
    Abstract: A device for optical mapping of protein binding sites, in particular, transcription factor binding sites, on single DNA molecules, includes an insulating substrate having two parallel channels and at least one slit connecting the two channels, a coverslip on the substrate, at least two reservoirs on the substrate connecting the channels of the insulating substrate, and at least two electrodes in the reservoirs. When the reservoirs are filled with a buffer solution, the electrodes are in electrical contact in the buffer solution.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: January 31, 2017
    Assignee: ACADEMIA SINICA
    Inventors: Chia-Fu Chou, K. K. Sriram
  • Patent number: 9387488
    Abstract: Methods, structures, devices and systems are disclosed for rapid enrichment and mass transport of biomolecules (e.g., such as proteins) or other small molecules and particles using electrodeless dielectrophoresis (eDEP). In one aspect, a device to aggregate molecules includes a substrate that is electrically insulating, an electrically insulative material formed on the substrate and structured to form a channel to carry an electrically conducting fluid containing particles, a constriction structure formed of the electrically insulative material and located in the channel to narrow a channel dimension and forming an opening with a size in the nanometer range, and a circuit coupled to the substrate to apply an ac electric field and a dc bias electric field along the channel, in which the constriction structure is structured to magnify the applied ac electric field to produce forces that operate collectively to aggregate the particles.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: July 12, 2016
    Assignee: ACADEMIA SINICA
    Inventors: Chia-Fu Chou, Kuo-Tang Liao
  • Publication number: 20150346104
    Abstract: A sensing device applied to an analyte molecule of a liquid sample and a buffer flow has at least one first inlet, at least one second inlet, a micro-flow channel, and at least one immobilization element. The first inlet is for inputting the liquid sample. The second inlet is for inputting the buffer flow. The micro-flow channel communicates with the first inlet and the second inlet. The immobilization element is for immobilizing sensing molecules for the analyte molecules. The analyte sample flow and the buffer flow, in the reverse direction, in the micro-flow channel enable the association and disassociation kinetics to be obtained. The present invention further provides a sensing system and a sensing method using the sensing device.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 3, 2015
    Inventors: Chia-Fu CHOU, Thierry LEICHLE, Yii-Lih LIN, Pattamon TEERAPANICH
  • Publication number: 20140320849
    Abstract: Methods, systems, and devices are disclosed for molecular capture, manipulation, and analysis. In one aspect, a device to aggregate and characterize particles in a fluid includes an electrically insulative substrate including a channel to carry an electrically conducting fluid containing particles, electrodes located in the channel forming a nanoscale opening and including an insulating layer over their surface at the opening, a first circuit to apply a non-uniform ac electric field and a dc bias signal across the electrodes, in which the applied non-uniform ac electric field produces a positive dielectrophoretic force to aggregate the particles in a trapping region including the opening and adjacent region, a second circuit to detect changes in a dc current caused by at least some of the particles in the trapping region, and an optical device that directs a coherent light beam on the opening to determine Raman spectra of the particles in the trapping region.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 30, 2014
    Applicants: MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG GMBH, ACADEMIA SINICA
    Inventors: Chia-Fu Chou, Lesser-Rojas Leonardo, Ming-Li Chu, Andreas Erbe
  • Publication number: 20140131204
    Abstract: Methods, structures, devices and systems are disclosed for rapid enrichment and mass transport of biomolecules (e.g., such as proteins) or other small molecules and particles using electrodeless dielectrophoresis (eDEP). In one aspect, a device to aggregate molecules includes a substrate that is electrically insulating, an electrically insulative material formed on the substrate and structured to form a channel to carry an electrically conducting fluid containing particles, a constriction structure formed of the electrically insulative material and located in the channel to narrow a channel dimension and forming an opening with a size in the nanometer range, and a circuit coupled to the substrate to apply an ac electric field and a dc bias electric field along the channel, in which the constriction structure is structured to magnify the applied ac electric field to produce forces that operate collectively to aggregate the particles.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: ACADEMIA SINICA
    Inventors: Chia-Fu Chou, Kuo-Tang Liao
  • Publication number: 20140120522
    Abstract: A device for optical mapping of protein binding sites, in particular, transcription factor binding sites, on single DNA molecules, includes an insulating substrate having two parallel channels and at least one slit connecting the two channels, a coverslip on the substrate, at least two reservoirs on the substrate connecting the channels of the insulating substrate, and at least two electrodes in the reservoirs. When the reservoirs are filled with a buffer solution, the electrodes are in electrical contact in the buffer solution.
    Type: Application
    Filed: October 8, 2013
    Publication date: May 1, 2014
    Applicant: Academia Sinica
    Inventors: Chia-Fu Chou, K.K. Sriram
  • Patent number: 6989235
    Abstract: An exemplary system and method of employing DNA hybridization for the detection of bio-agents is disclosed as comprising inter alia a biomolecular rotary motor (150); a capture probe DNA fragment (140) effectively attached to said biomolecular motor (150); a target DNA fragment (130) suitably adapted for hybridization with said capture probe DNA (140); a signal probe DNA fragment (120) suitably adapted for hybridization with said target DNA (130); and a fluorescent bead (100) attached to said signal probe DNA (120). Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve certain device fabrication parameters and/or performance metrics.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: January 24, 2006
    Assignee: Motorola, Inc.
    Inventors: Lars Chapsky, Wayne D. Frasch, Chia Fu Chou, Frederic Zenhausern, Herbert Goronkin
  • Patent number: 6986601
    Abstract: A method for mixing at least two fluids includes introducing the at least two fluids into a mixing chamber. The mixing chamber includes a piezoelectric component (500) for mechanical actuation of fluid motion within or adjacent the mixing chamber. The piezoelectric component includes at least first (400), second (410), third (420), and fourth (430) actuation domains, the first and third actuation domains being on first and third opposed sides of the piezoelectric component, and the second and fourth actuation domains being on second and fourth opposed sides of the piezoelectric component. The first and third domains are actuated at a first phase of a frequency of oscillation, and the second and fourth domains are actuated at a second phase of the frequency of oscillation.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: January 17, 2006
    Assignee: Motorola, Inc.
    Inventors: Daniel J. Sadler, Rajnish G. Changrani, Chia Fu Chou, Frederic Zenhausern
  • Patent number: 6858436
    Abstract: An exemplary system and method for detecting at least one analyte in a sample comprises inter alia a source of radiation (300), a near-field aperture array (315), a chromatographic field (330), a detector (350), and a data processor (370). Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve detection of any sub-diffraction-limited scale phenomena. Exemplary embodiments of the present invention representatively provide for improved S/N, increased sample throughput, refined spectral resolution and enhanced detection sensitivity.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: February 22, 2005
    Assignee: Motorola, Inc.
    Inventors: Frederic Zenhausern, Chia-Fu Chou
  • Patent number: 6824664
    Abstract: The present invention further provides a device for the integrated micromanipulation, amplification, and analysis of polarized particles such as DNA comprises a microchip which contains constrictions of insulating material for dielectrophoresis powered by an alternating current or direct current signal generator, and attached to a hot source that can be heated to specific temperatures. Nucleic acids can be heated and cooled to allow for denaturation, and the annealing of complementary primers and enzymatic reactions, as in a thermocycling reaction. After such a reaction has been completed at the constriction, the dielectrophoretic field can be switched to a direct field to release the product and direct it through a matrix for fractionation. The device includes data analysis equipment for the control of these operations, and imaging equipment for the analysis of the products.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: November 30, 2004
    Assignee: Princeton University
    Inventors: Robert H. Austin, Jonas O. Tegenfeldt, Edward C. Cox, Chia Fu Chou, Olgica Bakajin
  • Publication number: 20040228206
    Abstract: An exemplary system and method for providing substantially uniform mixing of fluid phases, wherein the frequency of operation, flow velocities and/or device dimensions generally correspond to otherwise substantially diffusion limited applications, is disclosed as comprising inter alia: a mixing chamber; a plurality of electrodes (150) for generating an electric field; an electromagnet (200) for generating a magnetic field; and a controller for oscillating the electric field and the magnetic field in order to produce a periodic frequency-difference phase cycling of the electric and magnetic fields. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve mixing operation in any diffusion limited application.
    Type: Application
    Filed: May 13, 2003
    Publication date: November 18, 2004
    Inventors: Daniel J. Sadler, Rajnish G. Changrani, Chia Fu Chou, Frederic Zenhausern
  • Publication number: 20040228205
    Abstract: An exemplary system and method for providing substantially uniform mixing of fluid phases, wherein the frequency of operation, flow velocities and/or device dimensions generally correspond to otherwise substantially diffusion limited applications, is disclosed as comprising inter alia: a mixing chamber; a plurality of electrodes (150) for generating an electric field; an electromagnet (200) for generating a magnetic field; and a controller for oscillating the electric field and the magnetic field in order to produce a periodic frequency-difference phase cycling of the electric and magnetic fields. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve mixing operation in any diffusion limited application.
    Type: Application
    Filed: May 13, 2003
    Publication date: November 18, 2004
    Inventors: Daniel J. Sadler, Rajnish G. Changrani, Chia Fu Chou, Frederic Zenhausern