Patents by Inventor CHIA-HSU HSIEH

CHIA-HSU HSIEH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8648396
    Abstract: The present disclosure utilizes the MEMS (Micro Electro Mechanical Systems) process and packaging method to produce a microsystem for analyzing blood which is capable of detecting several kinds of ions. The microsystem for analyzing blood has a miniaturized reference electrode, so size of the microsystem can be greatly reduced. The microsystem further has a gate detecting area larger than a conventional planar ISE or a conventional ISFET does, so interference with signals can be avoided, and packaging difficulty and blood leakage can be reduced. Therefore, the microsystem is thin and small, reacts rapidly, and has a high accuracy, and a high compatibility with IC (integrated circuit) process. In addition, the microsystem has high stability of long-term potential, low offset-potential characteristics, low alternating current impedance, high stability of dynamic reference potential, low electrochemical noises and high reproducibility of the electrode.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: February 11, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: I-Yu Huang, Chia-Hsu Hsieh
  • Publication number: 20120091512
    Abstract: The present disclosure utilizes the MEMS (Micro Electro Mechanical Systems) process and packaging method to produce a microsystem for analyzing blood which is capable of detecting several kinds of ions. The microsystem for analyzing blood has a miniaturized reference electrode, so size of the microsystem can be greatly reduced. The microsystem further has a gate detecting area larger than a conventional planar ISE or a conventional ISFET does, so interference with signals can be avoided, and packaging difficulty and blood leakage can be reduced. Therefore, the microsystem is thin and small, reacts rapidly, and has a high accuracy, and a high compatibility with IC (integrated circuit) process. In addition, the microsystem has high stability of long-term potential, low offset-potential characteristics, low alternating current impedance, high stability of dynamic reference potential, low electrochemical noises and high reproducibility of the electrode.
    Type: Application
    Filed: December 30, 2010
    Publication date: April 19, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: I-YU HUANG, CHIA-HSU HSIEH