Patents by Inventor Chia-Ling Chen

Chia-Ling Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250112087
    Abstract: A method for fabricating an integrated circuit device is provided. The method includes depositing a first dielectric layer; depositing a second dielectric layer over the first dielectric layer; etching a trench opening in the second dielectric layer, wherein the trench opening exposes a first sidewall of the second dielectric layer and a second sidewall of the second dielectric layer, the first sidewall of the second dielectric layer extends substantially along a first direction, and the second sidewall of the second dielectric layer extends substantially along a second direction different from the first direction in a top view; forming a via etch stop layer on the first sidewall of the second dielectric layer, wherein the second sidewall of the second dielectric layer is free from coverage by the via etch stop layer; forming a conductive line in the trench opening; and forming a conductive via over the conductive line.
    Type: Application
    Filed: October 3, 2023
    Publication date: April 3, 2025
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hwei-Jay CHU, Hsi-Wen TIEN, Wei-Hao LIAO, Yu-Teng DAI, Hsin-Chieh YAO, Tzu-Hui WEI, Chih Wei LU, Chan-Yu LIAO, Li-Ling SU, Chia-Wei SU, Yung-Hsu WU, Hsin-Ping CHEN
  • Patent number: 12266852
    Abstract: An electronic device is provided. The electronic device includes a first substrate, an insulating layer, a first conductive layer and a second conductive layer. The insulating layer is overlapped with the first substrate. The second conductive layer contacts with the first conductive layer. The first conductive layer and the second conductive layer are disposed between the first substrate and the insulating layer. The second conductive layer is disposed between the first conductive layer and the insulating layer. Moreover, a thermal expansion coefficient of the second conductive layer is between a thermal expansion coefficient of the first conductive layer and a thermal expansion coefficient of the insulating layer.
    Type: Grant
    Filed: January 2, 2024
    Date of Patent: April 1, 2025
    Assignee: INNOLUX CORPORATION
    Inventors: Chia-Ping Tseng, Ker-Yih Kao, Chia-Chi Ho, Ming-Yen Weng, Hung-I Tseng, Shu-Ling Wu, Huei-Ying Chen
  • Publication number: 20250098252
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a metal gate on a substrate, a contact etch stop layer (CESL) adjacent to the metal gate, and an interlayer dielectric (ILD) layer around the gate structure, performing a first etching process to remove the ILD layer, performing a second etching process to remove the CESL for forming a first contact hole, and then forming a first contact plug in the first contact hole. Preferably, a width of the first contact plug adjacent to the CESL is less than a width of the first contact plug under the CESL.
    Type: Application
    Filed: October 13, 2023
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ke-Ting Chen, Ching-Ling Lin, Wen-An Liang, Chia-Fu Hsu
  • Publication number: 20250080756
    Abstract: A method and apparatus for inter prediction in video coding system are disclosed. According to the method, one or more model parameters of one or more cross-color models for the second-color block are determined. Then, cross-color predictors for the second-color block are determined, wherein one cross-color predictor value for the second-color block is generated for each second-color pixel of the second-color block by applying said one or more cross-color models to corresponding reconstructed or predicted first-color pixels. The input data associated with the second-color block is encoded using prediction data comprising the cross-color predictors for the second-color block at the encoder side, or the input data associated with the second-color block is decoded using the prediction data comprising the cross-color predictors for the second-color block at the decoder side.
    Type: Application
    Filed: December 20, 2022
    Publication date: March 6, 2025
    Inventors: Man-Shu CHIANG, Olena CHUBACH, Yu-Ling HSIAO, Chia-Ming TSAI, Chun-Chia CHEN, Chih-Wei HSU, Tzu-Der CHUANG, Ching-Yeh CHEN, Yu-Wen HUANG
  • Publication number: 20250058286
    Abstract: A moisture-permeable composite membrane is manufactured by the step of subjecting a mixture to a crosslinking treatment. The mixture contains a polyisoprene, a polyurethane with a polar functional group, a crosslinking agent, and a vulcanizing agent. In the mixture, a weight ratio of the polyurethane with the polar functional group to the polyisoprene ranges from 1:0.55 to 1:6.60. A method for manufacturing the moisture-permeable composite membrane is also provided.
    Type: Application
    Filed: January 4, 2024
    Publication date: February 20, 2025
    Inventors: Kuo-Chin CHEN, Sung-Yun HUANG, Li-Hsun CHANG, Chia-Lin CHEN, Shu-Ling LIN, Yu-Ping CHUANG
  • Publication number: 20250063155
    Abstract: A method and apparatus for inter prediction in video coding system are disclosed. According to the method, input data associated with a current block comprising at least one colour block are received. A blending predictor is determined according to a weighted sum of at least two candidate predictions generated based on one or more first hypotheses of prediction, one or more second hypotheses of prediction, or both. The first hypotheses of prediction are generated based on one or more intra prediction modes comprising a DC mode, a planar mode or at least one angular modes. The second hypotheses of prediction are generated based on one or more cross-component modes and a collocated block of said at least one colour block. The input data associated with the colour block is encoded or decoded using the blending predictor.
    Type: Application
    Filed: December 20, 2022
    Publication date: February 20, 2025
    Inventors: Man-Shu CHIANG, Olena CHUBACH, Chia-Ming TSAI, Yu-Ling HSIAO, Chun-Chia CHEN, Chih-Wei HSU, Tzu-Der CHUANG, Ching-Yeh CHEN, Yu-Wen HUANG
  • Publication number: 20250039356
    Abstract: A video coding system that uses multiple models to predict chroma samples is provided. The video coding system receives data for a block of pixels to be encoded or decoded as a current block of a current picture of a video. The video coding system derives multiple prediction linear models based on luma and chroma samples neighboring the current block. The video coding system constructs a composite linear model based on the multiple prediction linear models. The video coding system applies the composite linear model to incoming or reconstructed luma samples of the current block to generate a chroma predictor of the current block. The video coding system uses the chroma predictor to reconstruct chroma samples of the current block or to encode the current block.
    Type: Application
    Filed: December 29, 2022
    Publication date: January 30, 2025
    Inventors: Chia-Ming TSAI, Chun-Chia CHEN, Yu-Ling HSIAO, Man-Shu CHIANG, Chih-Wei HSU, Olena CHUBACH, Tzu-Der CHUANG, Ching-Yeh CHEN, Yu-Wen HUANG
  • Patent number: 12199235
    Abstract: A lithium ion secondary battery is provided. The lithium ion secondary battery includes an electrolytic tank having an accommodating space, a positive electrode disposed in the accommodating space, a negative electrode disposed in the accommodating space and spaced apart from the positive electrode, and an isolation film disposed between the positive electrode and the negative electrode. In the X-ray diffraction spectrum of a first surface of the electrolytic copper foil, a ratio of the diffraction peak intensity I(200) of the (200) crystal face of the first surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the first surface is between 0.5 and 2.0. A ratio of the diffraction peak intensity I(200) of the (200) crystal face of a second surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the second surface is between 0.5 and 2.0.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: January 14, 2025
    Assignee: NAN YA PLASTICS CORPORATION
    Inventors: Chia-Ling Chen, Ming-Jen Tzou
  • Patent number: 12199234
    Abstract: A method for producing an electrolytic copper foil is provided. The method includes preparing a copper electrolytic solution including at least one addition agent and performing an electroplating step including: electrolyzing the copper electrolytic solution to form a raw foil layer. The raw foil layer has a first surface and a second surface opposite to the first surface. In the X-ray diffraction spectrum of the first surface, a ratio of the diffraction peak intensity I(200) of the (200) crystal face of the first surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the first surface is between 0.5 and 2.0. A ratio of the diffraction peak intensity I(200) of the (200) crystal face of the second surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the second surface is between 0.5 and 2.0.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: January 14, 2025
    Assignee: NAN YA PLASTICS CORPORATION
    Inventors: Chia-Ling Chen, Ming-Jen Tzou
  • Patent number: 11931187
    Abstract: A method for predicting clinical severity of a neurological disorder includes steps of: a) identifying, according to a magnetic resonance imaging (MRI) image of a brain, brain image regions each of which contains a respective portion of diffusion index values of a diffusion index, which results from image processing performed on the MRI image; b) for one of the brain image regions, calculating a characteristic parameter based on the respective portion of the diffusion index values; and c) calculating a severity score that represents the clinical severity of the neurological disorder of the brain based on the characteristic parameter of the one of the brain image regions via a prediction model associated with the neurological disorder.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: March 19, 2024
    Assignees: Chang Gung Medical Foundation Chang Gung Memorial Hospital at Keelung, Chang Gung Memorial Hospital, Linkou, Chang Gung University
    Inventors: Jiun-Jie Wang, Yi-Hsin Weng, Shu-Hang Ng, Jur-Shan Cheng, Yi-Ming Wu, Yao-Liang Chen, Wey-Yil Lin, Chin-Song Lu, Wen-Chuin Hsu, Chia-Ling Chen, Yi-Chun Chen, Sung-Han Lin, Chih-Chien Tsai
  • Patent number: 11927488
    Abstract: A thermal detection system is provided. The thermal detection system includes a thermal detector, an area indicating unit and a control unit. The thermal detector includes a thermal sensor array. The thermal detector is configured to detect thermal radiation within a detection area around the thermal detector. The detection area is defined by a field of view of the thermal sensor array. The area indicating unit is arranged to indicate a human-perceptible area according to the detection area. The human-perceptible area is located within the detection area and indicates a geometric form of the detection area. The control unit, coupled to the thermal detector and the area indicating unit, is configured to generate a thermal detection result according to the detected thermal radiation. The thermal detection system further includes a notification unit for overheat indication, a communication unit for wireless signal transmission, and a protection unit for overheat protection.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 12, 2024
    Inventor: Chia-Ling Chen
  • Publication number: 20230187691
    Abstract: A lithium ion secondary battery is provided. The lithium ion secondary battery includes an electrolytic tank having an accommodating space, a positive electrode disposed in the accommodating space, a negative electrode disposed in the accommodating space and spaced apart from the positive electrode, and an isolation film disposed between the positive electrode and the negative electrode. In the X-ray diffraction spectrum of a first surface of the electrolytic copper foil, a ratio of the diffraction peak intensity I(200) of the (200) crystal face of the first surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the first surface is between 0.5 and 2.0. A ratio of the diffraction peak intensity I(200) of the (200) crystal face of a second surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the second surface is between 0.5 and 2.0.
    Type: Application
    Filed: January 17, 2023
    Publication date: June 15, 2023
    Inventors: CHIA-LING CHEN, MING-JEN TZOU
  • Publication number: 20230155169
    Abstract: A method for producing an electrolytic copper foil is provided. The method includes preparing a copper electrolytic solution including at least one addition agent and performing an electroplating step including: electrolyzing the copper electrolytic solution to form a raw foil layer. The raw foil layer has a first surface and a second surface opposite to the first surface. In the X-ray diffraction spectrum of the first surface, a ratio of the diffraction peak intensity I(200) of the (200) crystal face of the first surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the first surface is between 0.5 and 2.0. A ratio of the diffraction peak intensity I(200) of the (200) crystal face of the second surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the second surface is between 0.5 and 2.0.
    Type: Application
    Filed: January 17, 2023
    Publication date: May 18, 2023
    Inventors: CHIA-LING CHEN, MING-JEN TZOU
  • Patent number: 11619650
    Abstract: The present invention discloses a method of preparing a specimen for scanning capacitance microscopy, comprising the steps of: providing a sample including at least one object to be analyzed; manually grinding the sample from an edge of the sample toward a target region containing the object to be analyzed gradually, and stopping at a distance of dl from a longitudinal section of the at least one object to be analyzed in the target region to form a grinding stopping surface; cutting the grinding stopping surface by a plasma focused ion beam equipped with a scanning electron microscopy toward the target region and stopping at a distance of d2 from the longitudinal section to form a cutting stopping surface, wherein 0<d2<d1; and manually grinding to polish the cutting stopping surface and gradually remove the part of the sample between the longitudinal section and the cutting stopping surface to expose the longitudinal section of the at least one object to be analyzed, and complete the preparation of a sp
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: April 4, 2023
    Assignee: MSSCORPS CO., LTD.
    Inventors: Chi-Lun Liu, Hui-Ni Huang, Chia-Ling Chen, Shihhsin Chang
  • Publication number: 20230098264
    Abstract: The present invention discloses a method of preparing a specimen for scanning capacitance microscopy, comprising the steps of: providing a sample including at least one object to be analyzed; manually grinding the sample from an edge of the sample toward a target region containing the object to be analyzed gradually, and stopping at a distance of dl from a longitudinal section of the at least one object to be analyzed in the target region to form a grinding stopping surface; cutting the grinding stopping surface by a plasma focused ion beam equipped with a scanning electron microscopy toward the target region and stopping at a distance of d2 from the longitudinal section to form a cutting stopping surface, wherein 0<d2<d1; and manually grinding to polish the cutting stopping surface and gradually remove the part of the sample between the longitudinal section and the cutting stopping surface to expose the longitudinal section of the at least one object to be analyzed, and complete the preparation of a sp
    Type: Application
    Filed: March 22, 2022
    Publication date: March 30, 2023
    Applicant: MSSCORPS CO., LTD.
    Inventors: CHI-LUN LIU, HUI-NI HUANG, CHIA-LING CHEN, SHIHHSIN CHANG
  • Patent number: 11588175
    Abstract: An electrolytic copper foil includes a raw foil layer having a first surface and a second surface opposite to the first surface. In the X-ray diffraction spectrum of the first surface, a ratio of the diffraction peak intensity I(200) of the (200) crystal face of the first surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the first surface is between 0.5 and 2.0. In the X-ray diffraction spectrum of the second surface, a ratio of the diffraction peak intensity I(200) of the (200) crystal face of the second surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the second surface is also between 0.5 and 2.0. A method for producing the electrolytic copper foil, and a lithium ion secondary battery is also provided.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: February 21, 2023
    Assignee: NAN YA PLASTICS CORPORATION
    Inventors: Chia-Ling Chen, Ming-Jen Tzou
  • Patent number: 11517246
    Abstract: Disclosed herein is a method for diagnosing a neurological disorder based on at least one magnetic resonance imaging (MRI) image. The method includes identifying brain image regions that contain a respective portion of diffusion index values of at least one diffusion index. For each of the brain image regions, a characteristic parameter based on the respective portion of the diffusion index values is calculated. a diagnoses is then made for the brain using one of predetermined categories of the neurological disorder by performing classification on a combination of the characteristic parameters via a classifier.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: December 6, 2022
    Assignees: Chang Gung Memorial Hospital, Linkou, Chang GungUniversitv, Change Gung Medical Foundation Chang Gung Memorial Hospital at Keelung
    Inventors: Jiun-Jie Wang, Yi-Hsin Weng, Shu-Hang Ng, Jur-Shan Cheng, Yi-Ming Wu, Yao-Liang Chen, Wey-Yil Lin, Chin-Song Lu, Wen-Chuin Hsu, Chia-Ling Chen, Yi-Chun Chen, Sung-Han Lin, Chih-Chien Tsai
  • Publication number: 20200350620
    Abstract: An electrolytic copper foil includes a raw foil layer having a first surface and a second surface opposite to the first surface. In the X-ray diffraction spectrum of the first surface, a ratio of the diffraction peak intensity I(200) of the (200) crystal face of the first surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the first surface is between 0.5 and 2.0. In the X-ray diffraction spectrum of the second surface, a ratio of the diffraction peak intensity I(200) of the (200) crystal face of the second surface relative to the diffraction peak intensity I(111) of the (111) crystal face of the second surface is also between 0.5 and 2.0. A method for producing the electrolytic copper foil, and a lithium ion secondary battery is also provided.
    Type: Application
    Filed: April 9, 2020
    Publication date: November 5, 2020
    Inventors: CHIA-LING CHEN, MING-JEN TZOU
  • Publication number: 20200217723
    Abstract: A thermal detection system is provided. The thermal detection system includes a thermal detector, an area indicating unit and a control unit. The thermal detector includes a thermal sensor array. The thermal detector is configured to detect thermal radiation within a detection area around the thermal detector. The detection area is defined by a field of view of the thermal sensor array. The area indicating unit is arranged to indicate a human-perceptible area according to the detection area. The human-perceptible area is located within the detection area and indicates a geometric form of the detection area. The control unit, coupled to the thermal detector and the area indicating unit, is configured to generate a thermal detection result according to the detected thermal radiation. The thermal detection system further includes a notification unit for overheat indication, a communication unit for wireless signal transmission, and a protection unit for overheat protection.
    Type: Application
    Filed: December 13, 2019
    Publication date: July 9, 2020
    Inventor: CHIA-LING CHEN
  • Publication number: 20180263548
    Abstract: A method is to be implemented by a computing device and includes steps of: a) identifying, according to a magnetic resonance imaging (MRI) image, brain image regions each of which contains a respective portion of diffusion index values of at least one diffusion index, which results from image processing performed on said at least one MRI image; b) for each of the brain image regions, calculating a characteristic parameter based on the respective portion of the diffusion index values; and c) diagnosing the brain examined with one of predetermined categories of the neurological disorder by performing classification on a combination of the characteristic parameters via a classifier.
    Type: Application
    Filed: March 16, 2018
    Publication date: September 20, 2018
    Inventors: Jiun-Jie Wang, Yi-Hsin Weng, Shu-Hang Ng, Jur-Shan Cheng, Yi-Ming Wu, Yao-Liang Chen, Wey-Yil Lin, Chin-Song Lu, Wen-Chuin Hsu, Chia-Ling Chen, Yi-Chun Chen, Sung-Han Lin, Chih-Chien Tsai